期刊文献+

Preparation of gradient wettability surface by anodization depositing copper hydroxide on copper surface 被引量:1

阳极氧化沉积氢氧化铜法制备梯度润湿铜表面(英文)
下载PDF
导出
摘要 A facile route for preparation of gradient wettability surface on copper substrate with contact angle changing from 90.3°to4.2°was developed.The Cu(OH)2 nanoribbon arrays were electrochemically deposited on copper foil via a modified anodization technology,and the growth degree and density of the Cu(OH)2 arrays may be controlled varying with position along the substrate by slowly adding aqueous solution of KOH into the two-electrode cell of an anodization system to form the gradient surface.The prepared surface was water resistant and thermal stable,which could keep its gradient wetting property after being immersed in water bath at 100℃ for 10 h.The results of scanning electron microscopy(SEM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) demonstrate that the distribution of Cu(OH)2 nanoribbon arrays on copper surface are responsible for the gradient wettability. 提出一种在金属铜上制备梯度润湿表面(接触角变化范围90.3°-4.2°)的简易方法。采用改进的阳极氧化电化学沉积技术,通过向阳极氧化系统的双电极容器中滴加氢氧化钾溶液,使铜箔电极上氢氧化铜纳米带阵列的生长程度与密度随铜箔高度而变化,从而形成润湿性梯度。所制备的润湿梯度铜表面具有耐热耐水特性,当此铜表面置于100℃的水浴中10h后仍保持其润湿性梯度。SEM、XRD和XPS测试结果表明,铜表面的氢氧化铜纳米带阵列的生长特性与分布是形成润湿性梯度的主要原因。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2301-2307,共7页 中国有色金属学报(英文版)
基金 Project(S2012010010417)supported by the Guangdong Natural Science Foundation,China Project(20130172110008)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
关键词 gradient wettability surface Cu(OH)2 nanoribbon array anodization depositing contact angle 梯度润湿表面 氢氧化铜纳米带阵列 阳极氧化电沉积 接触角
  • 相关文献

参考文献24

  • 1ZHU X, WANG H, LIAO Q, DINGY D, GUY B. Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces [J]. Experimental Thermal and Fluid Science, 2009, 33(6): 947-954.
  • 2GLASSFORD S, CHAN K L A, BYME B, KAZARIAN S G. Chemical imaging of protein adsorption and crystallization on a wettability gradient surface [J]. Langmuir, 2012, 28(6): 3174-3179.
  • 3SHIN Y N, KIM B S, AHN H H, LEE J H, KIM K S, LEE J Y, KIM M S, KHANG G, LEE H B. Adhesion comparison of human bone marrow stem cells on a gradient wettable surface prepared by corona treatment [J]. Applied Surface Science, 2008, 255(2): 293-296.
  • 4JU J, XIAO K, YAO X, BAI H, JIANG L Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection [J]. Advanced Materials, 2013, 25: 5937-5942.
  • 5DANIEL S, CHAUDHURY M K, CHEN J C. Fast drop movements resulting from the phase change on a gradient surface [J]. Science 2001, 291: 633-636.
  • 6LIAO Q, GU Y B, ZHU X, WANG H, XIN M D. Experimental investigation of dropwise condensation heat transfer on the surface with a surface energy gradient [J]. Journal of Enhanced Heat Transfer~ 2007, 14(3): 243-256.
  • 7CHAUDHURY M K, WHITES/DES G M. How to make water run uphill [J]. Science, 1992, 256(5063): 1539-1541.
  • 8HANDESRIS B, SOUPREMANIEN U, DUNOYER N. Uphill motion of droplets on tilted and vertical grooved substrates induced by a wettability gradient [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434: 126-135.
  • 9MEYYAPPAN S, SHADNAM M R, AMIRFAZLI A. Fabrication of surface energy/chemical gradients using self-assembled monolayer surfaces [J]. Langmuir, 2008, 24(6): 2892-2899.
  • 10YU X, WANG Z Q, HANG Y G, ZHANG X. Surface gradient material: From superhydrophobicity to sueprhydrophilicity [J]. Langmuir, 2006, 22(10): 4483-4486.

二级参考文献79

  • 1Thomson Y. Trans. Roy. Soc. London, 1805, 95:65-87.
  • 2Thomosn J. Phi. Mag. Series 4, 1855, 10(67) : 330-333.
  • 3Marangoni C, Pietro S, Liceo R. I1 Nuovo Cimento (1869-1876). 1872, (7/8): 301-356.
  • 4Hong D, Cho W K, Kong B, Choi I S. Langmuir, 2010, 26 (19) : 15080-15083.
  • 5Yasuda T, Suzuki K, Shimoyama 1. Proc. Micro. Total Analysis Systems, 2003, 2:1129-1132.
  • 6Sun C, Zhao X W, Hun Y H, Gu Z Z. Thin Solid Films, 2008, 516(12) : 4059-4063.
  • 7Lai Y H, YangJT, Shieh D B. Lab onaChip, 2010, 10(4): 499-504.
  • 8Chaudhury M K, Whitesides G M. Science, 1992, 256(5063) : 1539-1541.
  • 9Ichimura K, Oh S K, Nakagawa M. Science, 2000, 288 (5471) : 1624-1626.
  • 10Gallardo B S, Gupta V K, Eagerton F D, Jong L I, Craig V S, Shah R R, Abbott N L. Science, 1999, 283(5398) : 57-60.

共引文献7

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部