摘要
目的:构建再次妊娠妊娠期肝内胆汁淤积症(ICP)孕妇羊水混浊的预测模型,探讨相关指标的预测价值。方法:收集2009年1月至2014年8月在浙江大学医学院附属妇产科医院再次妊娠住院分娩的ICP孕妇的临床资料及胎儿风险相关资料,应用人工神经网络构建羊水混浊预测模型,分析相关指标对羊水混浊的预测结果和影响权重。结果:应用人工神经网络模型预测ICP孕妇羊水混浊灵敏度为68.0%,特异性为85.0%,准确率为80.3%。参数权重在10%以上的因素有妊娠合并症、孕妇分娩前血清甘胆酸浓度和孕妇年龄。结论:人工神经网络可用于构建ICP孕妇胎儿宫内环境即羊水混浊的预测模型;影响再次妊娠ICP孕妇胎儿宫内安全的危险因素有孕妇年龄、妊娠合并症、孕妇分娩前血清甘胆酸浓度等。
Objective: To establish a prediction model of fetal meconium-stained amniotic fluid in re-pregnant women with intrahepatic cholestasis of pregnancy ( ICP ) . Methods: Clinical data of 180 re-pregnant women with ICP delivering in Women ’s Hospital, Zhejiang University School of Medicine between January 2009 to August 2014 were collected .An artificial neural network model ( ANN ) for risk evaluation of fetal meconium-stained fluid was established and assessed . Results: The sensitivity , specificity and accuracy of ANN for predicting fetal meconium-stained fluid were 68 .0%, 85 .0%and 80 .3%, respectively .The risk factors with effect weight >10%were pregnancy complications , serum cholyglycine level , maternal age .Conclusion:The established ANN model can be used for predicting fetal meconium-stained amniotic fluid in re-pregnant women with ICP .
出处
《浙江大学学报(医学版)》
CAS
CSCD
北大核心
2015年第3期264-268,共5页
Journal of Zhejiang University(Medical Sciences)
基金
浙江省公益性技术应用研究计划(2011C23010)
关键词
神经网络(计算机)
妊娠
胎儿监测
胆汁淤积
肝内
羊水
预测
Neural networks ( computer )
Pregnancy
Fetal monitoring
Cholestasis, intrahepatic
Amniotic fluid
Forecasting