期刊文献+

基于背景差分的高速公路运动目标检测算法 被引量:3

Detection Algorithm of Expressway Moving Objects Based on Background Subtraction
下载PDF
导出
摘要 针对背景差分法难以适应光照变化频繁且对实时性要求较高的高速公路监控环境的问题,提出一种差分图像自适应阈值确定算法,利用统计学方法对差分图像中目标的灰度值进行快速有效的分类,并将分类界限作为自适应阈值,再利用差分图像的梯度分布辅助判断运动目标的区域.试验结果表明,该算法可以适应不同的监控环境,能准确识别交通目标,且具有较好的稳定性. As the existing background subtraction algorithm is insufficient for the real-time expressway monitoring with frequent light change, an adaptive threshold determination algorithm based on the gray level is proposed. In this algorithm, the pixels of the object in the difference image are effectively classified by means of the statistical method, and the classification standard is defined as the adaptive threshold. Moreover, the gradient distribution of the difference image is used to judge the area of motion objects. Experimental results show that the proposed adap- tive threshold algorithm is effective in recognizing obiects in different environments with hiuh accuracv and stability.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第4期1-6,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51178193) 交通运输部西部课题(2011-318-365-100)~~
关键词 高速公路智能监控 目标检测 背景差分 自适应阈值 expressway intelligent monitoring object detection background subtraction adaptive threshold
  • 相关文献

参考文献17

  • 1Sun Z,Bebis G, Miller R. Monocular preerash vehicle de- tection:features and classifiers [ J ]. IEEE Transactions on Image Processing, 2006,15 ( 7 ) : 2019-2034.
  • 2Sivaraman S, Triw:'di M M. A general active-learning framework for on-road vehicle recognition and tracking : J ]. IEEE Transactions on Intelligent Transportation Sys- tems ,2010,11 ( 2 ) :267-276.
  • 3Yuan Q,Thangali A,Ablavsky V,et al. l,earning a family of detectors via muhiplicative kernels [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence,2011 , 33(3) :514-530.
  • 4Chang W C, Cho C W. Online boosting for vehicle detec- tion [ J ]. IEEE Transactions on Systems, Man, and Cyber- netics, Part B : Cybernetics ,2010,40( 3 ) :892-902.
  • 5Jazayeri A, Cat H,Zheng J Y,et al. Vehicle detection and tracking in car video based on motion model [ J ]. IEEE Transactions on Intelligent Transportation Systems,2011, 12(2) :583-595.
  • 6Sivaraman S, Trivedi M M. Looking at vehicles on the road:a survey of vision-based vehicle deteetion,tracking, and behavior analysis [ J ]. IEEE Transactions on Intelli- gent Transportation Systems, 2013,14 ( 4 ) : 1773-1795.
  • 7Wren C R, Azarbayejani A,Dan'ell T,et al. Pfinder: real- time tracking of the human body [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) :780-785.
  • 8Stauffer C,Grimson W E L. Adaptive ba,::kgronnd mixtut:models for real-time tracking [ J:. Proceedings of Compu- ter Vision and Pattern Recognition, 1999,2:2246.
  • 9Piccardi M. Background subtraction techniques:a review [ J ]. IEEE International Conference on Systems, Man and Cybernetics, 2004,4 : 3099 -3104.
  • 10Halevi G, Weinshall D. Motion of disturbances : detection and tracking of multi-body non-rigid motion [ J ]. Ma- chine Vision and Applications, 1999,11 (3) : 122-137.

二级参考文献8

  • 1Chris Stauffer, Eric W, Grimson L. Learning patterns of activity using real-time tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 747-757.
  • 2Kaewtrakulpong Pakorn, Bowden Richard. An improved adaptive background mixture model for real-time tracking with shadow detection[ C ]//Proceedings of the 2nd European Workshop Based on Advanced Video-based Surveillance Systems Providence, USA: kluwer Academic Publishers, 2001 : 149-158.
  • 3Zoran Zivkovic. Recursive unsupervised learning of finite mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (5) : 651-656.
  • 4Lee Dar-Shyang. Effective gaussian mixture learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5) : 827-832.
  • 5Michael Harvine, Gaile Gordon, John Woodfill. Foreground segmentation using adaptive mixture models in color and depth [ C ]//IEEE Workshop on Detection and Recognition of Events in Video. New York : Computer Science Press, 2001 : 3-11.
  • 6Thongkamwitoon T, Aramvith S, Chalidabhongse T H. An adaptive real-time background subtraction and moving shadows detection[ C ]//IEEE International Conference on Multimedia and Expo. New York: IEEE, 2004, 2: 1459-1462.
  • 7Chao Yuyan, Kenji Suzuki. A run-based two-scan labeling algorithm[J]. IEEE Intelligent Transaction on Image Processing, 2008, 17(5) : 749-756.
  • 8Han Hongzhe, Wang Zhiling. Adaptive background modeling with shadow suppression [ EB/OL ]. [ 2008-12-04 ]. http:// ieeexplore, ieee. org/stamp, jsp? arnumber =01252045.

共引文献21

同被引文献40

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部