摘要
针对背景差分法难以适应光照变化频繁且对实时性要求较高的高速公路监控环境的问题,提出一种差分图像自适应阈值确定算法,利用统计学方法对差分图像中目标的灰度值进行快速有效的分类,并将分类界限作为自适应阈值,再利用差分图像的梯度分布辅助判断运动目标的区域.试验结果表明,该算法可以适应不同的监控环境,能准确识别交通目标,且具有较好的稳定性.
As the existing background subtraction algorithm is insufficient for the real-time expressway monitoring with frequent light change, an adaptive threshold determination algorithm based on the gray level is proposed. In this algorithm, the pixels of the object in the difference image are effectively classified by means of the statistical method, and the classification standard is defined as the adaptive threshold. Moreover, the gradient distribution of the difference image is used to judge the area of motion objects. Experimental results show that the proposed adap- tive threshold algorithm is effective in recognizing obiects in different environments with hiuh accuracv and stability.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2015年第4期1-6,共6页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(51178193)
交通运输部西部课题(2011-318-365-100)~~
关键词
高速公路智能监控
目标检测
背景差分
自适应阈值
expressway intelligent monitoring
object detection
background subtraction
adaptive threshold