期刊文献+

计入固液界面作用的润滑热力学模型与分析 被引量:2

Thermodynamic analysis of lubrication considering solid-liquid interface interaction
下载PDF
导出
摘要 摩擦与润滑过程是典型的能量耗散过程,在机理上与非平衡热力学中的熵增、耗散结构等理论颇有相似之处.通过热力学分析可以对一些典型的摩擦磨损过程做出合理的机理揭示与推测.本文利用热力学理论对典型的润滑过程进行了建模分析.采用分离压模型表征和计入了微尺度下的固液界面作用,揭示分析了润滑热力学模型与润滑状态Stribeck曲线的联系.从分析计算结果来看,润滑Stribeck曲线的摩擦系数最低点与系统热力学上的熵增率最低点具有相当好的对应关系,而润滑状态从弹流润滑向薄膜润滑的转变过程,可以用耗散结构理论加以机理解释.文中的热力学模型和方法能够有效地体现出润滑过程中多物理要素跨尺度非线性耦合的作用,对实际工程与实验有着重要的指导作用. Friction or lubrication process is a typical process of the energy dissipation. It can be reasonably described and speculated by using the entropy increase and dissipative structure theory of the non-equilibrium thermodynamics. In this paper, we model and analyze the typical thin-film lubrication mechanism based on the theory of thermodynamics, by using the interfacial disjoining pressure to characterize the dominant role of the solid-lubricant interaction on a microscale and establishing the lubrication Stribeck curve based on thermodynamic concepts. The concept of entropy production is adopted to describe the lubrication system, which is defined as the sum of multiplications of the thermodynamic forces and flows. Then the variations and the competing relations between the pairs of thermodynamic forces and flows could be used to reveal the different factors dominated in the lubrication system, such as the solid-liquid interaction, the sliding velocity, and the normal load. In this paper, we assume that all the dissipated energy caused by the viscous resistance of lubricant is converted into heat, then the total entropy increase per surface area at the frictional interface is considered, affected by interfacial disjoining pressure and the one-dimensional heat flow. With the entropy increasing analysis of lubrication process, we find that when the entropy production in the steady state becomes minimum, the total energy dissipation due to friction also becomes minimum, which directly indicates the lowest friction coefficient point at the lubrication Stribeck curve. Moreover, when a lubrication system loses its stability slightly from the equilibrium state, self-organization may occur at the solid-lubricant interface, thus resulting in partially ordering interfacial structures, which may indicate the interfacial structures when tribosystem turns from hydrodynamic lubrication phase into thin- film lubrication phase. In the experimental aspect, the location of the lowest friction coefficient point at the Stribeck curve has a very good correspondence to the minimum entropy point predicted by our thermodynamic model, and the lubrication transition process from hydrodynamic phase to thin-film phase can be explained quite well by the theory of dissipative structures when the system loses its stability. Furthermore, a calculation model of the friction coefficient for thin-film lubrication is obtained when considering the dominant contribution of the solid-lubricant interfacial interaction through an equivalent force method. The calculation data correspond well to the experimental results. In summary, thermodynamic model could effectively characterize the lubrication process in mechanism by revealing the involved multi-scale effect, multi-physical effect and nonlinear coupling effect.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第16期422-429,共8页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2012CB934101) 国家自然科学基金(批准号:51175282,51375254)资助的课题~~
关键词 润滑Stribeck曲线 润滑热力学模型 界面分离压 自组织行为 Stribeck curve, thermodynamic model, disjoining pressure, self-organization
  • 相关文献

参考文献1

二级参考文献8

共引文献8

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部