期刊文献+

光学相干层析成像技术用于三维生物打印水凝胶支架结构的定量评价研究 被引量:9

Quantitative Evaluation of Three-Dimensional Bio-Printed Hydrogel Scaffolds by Optical Coherence Tomography
原文传递
导出
摘要 三维生物打印水凝胶支架内部结构的无损检测分析,对组织工程支架设计制造和生物功能实现具有重要意义。提出用扫频光学相干层析成像技术(SS-OCT)对三维生物打印的水凝胶支架进行无损成像和定量分析。设计和打印了4种代表性结构的三维水凝胶支架。用高分辨SS-OCT成像系统重建并揭示了支架内部三维结构,识别出打印支架与设计结构的差异以及孔融合、孔变形、通道堵塞等打印缺陷。基于阈值分割和形态操作的自动分析算法,定量表征了支架的孔隙大小及分布、实体支撑尺寸、孔隙率和三维连通性等结构参数。研究证明,OCT技术可以为三维生物打印水凝胶支架的优化设计、过程控制、功能分析提供有力工具。 Nondestructive investigation and analysis of the internal structure of three-dimensional(3D) bio-printed hydrogel scaffolds is very important for the design, fabrication, and biological functions of engineered tissue scaffolds. Swept- source optical coherence tomography(SS- OCT) is applied to nondestructive imaging and quantitative analysis of 3D bio-printed hydrogel scaffolds. 3D bio-printing technique is used to produce four representative designed geometries of hydrogel scaffolds. High-resolution SS-OCT visualizes the three-dimensional internal structure of the scaffolds, identifies the difference between the designed model and as- produced construction, and detects the printed defects such as fused pores, deformation of pores, breakages of flow channels.The automatic imaging analysis algorithms are developed to quantitatively characterize the pore size(PS) and its distribution, strut size(St S), volume porosity(VP), and pore interconnectivity(PC). It concludes that OCT may be a key tool for the design optimization, process refinement, function realization of 3D bio-printed hydrogel scaffolds.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第8期123-131,共9页 Chinese Journal of Lasers
基金 国家自然科学基金(61108083 81371695)
关键词 生物光学 光学相干层析成像 三维生物打印 水凝胶支架 定量表征 biotechnology optical coherence tomography three-dimensional bio-printing hydrogel scaffolds quantitative characterization
  • 相关文献

参考文献26

  • 1S Wüst,R Müller,S Hofmann.3D bioprinting of complex channels-effects of material,orientation,geometry,and cell embedding[J].Journal of Biomedical Materials Research Part A,2014,103(8):2558-2570.
  • 2T Billiet,M Vandenhaute,J Shelfhout,et al..A review of trends and limitations in hydrogel rapid prototyping for tissue engineering [J].Biomaterials,2012,33(26):6020-6041.
  • 3M Xu,X Wang,Y Yan,et al..An cell-assembly derived physiological 3D model of the metabolic syndrome,based on adiposederived stromal cells and a gelatin/alginate/fibrinogen matrix[J].Biomaterials,2010,31(14):3868-3877.
  • 4S Van Bael,Y C Chai,S Truscello,et al..The effect of pore geometry on the in vitro biological behavior of human periosteumderived cells seeded on selective laser-melted Ti6Al4V bone scaffolds[J].Acta Biomaterialia,2012,8(7):2824-2834.
  • 5A A Appel,M A Anastasio,J C Larson,et al..Imaging challenges in biomaterials and tissue engineering[J].Biomaterials,2013,34(28):6615-6630.
  • 6S Yue,P D Lee,G Poologasundarampillai,et al..Synchrotron X-ray microtomography for assessment of bone tissue scaffolds[J].Journal of Materials Science:Materials in Medicine,2010,21(3):847-853.
  • 7C Lalande,S Miraux,S M Derkaoui,et al..Magnetic resonance imaging tracking of human adipose derived stromal cells within threedimensional scaffolds for bone tissue engineering[J].Journal of European Cells and Materials,2011,21:341-354.
  • 8D Liu,E S Ebbini.Viscoelastic property measurement in thin tissue constructs using ultrasound[J].IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2008,55(2):368-383.
  • 9E Liu,M D Treiser,P A Johnson,et al..Quantitative biorelevant profiling of material microstructure within 3D porous scaffolds via multiphoton fluorescence microscopy[J].Journal of Biomedical Materials Research Part B,2007,82(2):284-297.
  • 10J Fujimoto,W Drexler.Introduction to optical coherence tomography[M].//W Drexler,J G Fujimoto (Eds.) Optical Coherence Tomography:Technology and Applications.New York:Springer-Verlag Berlin Heidelberg,2008:1-45.

二级参考文献86

  • 1曾楠,何永红,马辉,王淑霞.应用于珍珠检测的光学相干层析技术[J].中国激光,2007,34(8):1140-1145. 被引量:25
  • 2Anna Szkulmowska. Maciej Szkulmowski, Andrzej Kowalczyk, et al: Phase-resolved Doppler optical coherence tomography-limitations and improvements[J]. Opt Lett, 2008, 33(3) : 1425- 1427.
  • 3Jennifer K Barton, Steven Stromski. Flow measurement without phase information in optical coherence tomography images [J]. Opt Express, 2005, 13(14): 5234-5239.
  • 4Huang L, Ding Z, Hong W, et al: Higher-order cross-correlation-based Doppler optical coherence tomography[J]. Opt I.etts, 2011, 36(22): 4314-4316.
  • 5A Royset, T Storen, F Stabo-Eeg, et al: Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography[C]. SPIE, 2006, 6079: 607925.
  • 6Ahn Y C, Jung W, Chen Z. Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography[]]. Opt Lett, 2007, 32(11): 1587-1589.
  • 7Michaely R, Bacbmann A H, Villiger M I., et al: Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography[J]. J Biomed Opt, 2007, 12(4) : 041213.
  • 8Wang Y, Bower B A, Izatt J A, et al: In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherencetomography[J]. Biomed Opt, 2007, 12(4): 041215.
  • 9Meng , Ding Z, L, et al: Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography[J]. Opt Express, 2010, 18 (2) : 1261 - 1270.
  • 10Wang C, Ding Z, Mei S, et al: Ultra-long-range phase imaging with orthogonal dispersive spectral domain optical coherencetomography[]]. Opt Lett, 2012, 37(21): 4555-4557.

共引文献80

同被引文献115

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部