期刊文献+

准周期的表面等离子体布拉格光栅的理论研究 被引量:2

Theoretical Study on Quasiperiodic Surface Plasmons Bragg Gratings
原文传递
导出
摘要 提出了一种基于金属-绝缘体-金属(MIM)波导结构的双频带表面等离子体(SPs)布拉格反射器。周期性地调节绝缘体层的宽度,在MIM波导结构中将会形成准周期的SPs布拉格光栅。根据投影理论,在合适的结构参数下,SPs的透过谱中会产生两个禁带,在这两个禁带中SPs的传播是被禁止的。加入适当长度的缺陷层之后,将分别在禁带中产生SPs缺陷模式,其中心波长分别是1310 nm和1550 nm。当改变缺陷层的长度时,由于SPs的法布里-珀罗共振效应,缺陷模式的中心波长会产生周期性的变化。利用电磁仿真软件Comsol进行数值模拟,得到的结果验证了设计方法的正确性。 A kind of dual- band surface plasmons(SPs) Bragg reflectors, based on metal- insulator- metal(MIM) waveguides, is proposed. By adjusting the width of the insulator layer periodically, a quasiperiodic SPs Bragg grating is achieved in the MIM waveguide structure. According to projection theory, transmission spectrum of SPs produces two band gaps, in which SPs′ propagation is prohibited under the suitable structure parameters. When inserting the defect layer of appropriate length into the structure, two SPs defect modes appear, whose center wavelengths are respectively located at around 1310 nm and 1550 nm. Because of the SPs Fabry- Perot effect, the center wavelengths of the defect modes change periodically as the change of defect layer length. The electromagnetic simulation is conducted by commercial software Comsol to verify the design.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第8期259-264,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(11347196 1134724) 江苏省自然科学基金(BK2012548)
关键词 光栅 布拉格反射器 表面等离子体 法布里-珀罗 gratings Bragg reflectors surface plasmons Fabry-Perot
  • 相关文献

参考文献3

二级参考文献42

  • 1刘叶新,陈晓文,邢晓波,吴添洪,傅思镜,文锦辉,林位株.具有调制功能的多模干涉型1×3分束器[J].光学学报,2005,25(10):1406-1410. 被引量:3
  • 2R. Zia, M. D. Selker, P. B. Catrysse et al.. Geometries and materials for subwavelength surface plasmon modes[J]. J. Opt. Soc. Am. A, 2004, 21(12): 2442-2446.
  • 3S. E. Kocabas, G. Veronis, D. A. B. Miller et al.. Modal analysis and coupling in metal-insulator-metal waveguides[J]. Phys. Rev. B, 2009, 79(3): 035120.
  • 4J. A. Dionne, L. A. Sweatlock, H. A. Atwater. Plasmon slot waveguides: Towards chip scale propagation with subwavelength- scale localization[J]. Phys. Rev. B, 2006, 73(3) : 035407.
  • 5G. Veronis, S. Fan. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Appl. Phys. Lett. , 2005, 87(13): 131102.
  • 6Z. Han, S. He. Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter [J]. Opt . Commun., 2007, 278(1): 199-203.
  • 7Z. Han, A. Y. Elezzabi, V. Van. Wideband Y splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides [J]. Appl. Phys. Lett. , 2010, 96(13) : 131106.
  • 8B. Wang, G. P. Wang. Surface plasmon polariton propagation in nanoseale metal gap waveguides [J]. Opt. Lett., 2004, 29(17) : 1992-1994.
  • 9Z. Han, L. Liu, E. Forsberg. Ultra-compact directional couplers and Maeh Zehnder interferometers employing surface plasmon polaritons[J]. Opt. Commun. , 2006, 259(2): 690-695.
  • 10M. Pu, N. Yao, C. Huet al.. Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide [J]. Opt. Express, 2010, 18 (20): 21030-21037.

共引文献43

同被引文献23

  • 1Wang Bing, Teng Jinghua, Yuan Xiaocong. Inelastic scattering of surface plasmons in scillating metallic waveguides[J]. Appl Phys Lett, 2011, 98(26): 263111.
  • 2Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
  • 3Neutens P, Van Dorpe P, De Vlaminck I, et al.. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides[J]. Nat. photonics, 2009, 3: 283-286.
  • 4Yao Xiankun. Wavelength demultiplexing in metal-insulator-metal plasmonic waveguides[J]. M od Phys Lett B, 2014, 28(4): 1450025.
  • 5Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nat Photonics, 2010, 4(2): 83-91.
  • 6Matsuzaki Y, Okamoto T, Haraguchi M, et al.. Characteristics of gap plasmon waveguide with stub structures[J]. Opt Express, 2008, 16(21): 16314-16325.
  • 7Lin Xianshi, Huang Xuguang. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Opt Lett, 2008, 33 (23): 2874-2876.
  • 8Xia Xiushan, Wang Jicheng, Liang Xiuye, et al.. A dual-way directional surface-plasmon -polaritons launcher based on asymmetric slanted nanoslits[J]. J Mod Opt, 2015, 62(5): 358-363.
  • 9Zhu Qionggan, Tan Wei, Wang Zhiguo. The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal surface plasmon polariton waveguide[J~. J Phys, 2014, 26(25): 255301.
  • 10Zhu W, Rukhlenko I D, Premaratne M. Manipulating energy flow in variable-gap plasmonic waveguides[J]. Opt Lett, 2012, 37(24): 5151-5153.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部