期刊文献+

CO_2反演中卫星数据的云污染处理方法研究 被引量:4

Cloud Contaminated Satellite Data Processing Method in CO_2 Retrieving
原文传递
导出
摘要 在O2-A波段进行了温室气体卫星数据的云污染问题研究,并从光程的角度分析了散射对CO2反演的影响,提出了一种解决CO2反演中云污染问题的方法。对GOSAT L1B数据的处理结果显示晴空、有云、待定像素分别涵盖了83.58%、9.70%、6.72%的L2数据;像素的CO2反演结果中,晴空、薄卷云像素的结果与L2保持较高一致,其余像素的结果普遍低于L2结果。O2-A波段云检测有其优势但仍存在一定的局限性,如对薄卷云识别的准确性不足等,而光程法散射校正能有效改善薄卷云散射导致的CO2反演误差,可作为云检测的一个有效补充,两者结合是解决云污染问题的一种有前景的方法,同时在云检测中对薄卷云像素占多数的I类待定像素应予以更高重视。 Cloud contamination of greenhouse gas satellite data is investigated by using O2-A band, the scattering effects on CO2 retrieval from optical path-length is analyzed and a new method for solving cloud contamination problem is proposed. The results show that 83.58%, 9.70%, and 6.72% L2 data are contained in clear, cloud, and undetermined scenes. The COs retrieval of these clear scene and cirrus scene appears highly agreement with L2 product, but the other COs retrieval is generally lower than L2 product. Cloud screening in O2-A band has its own advantage but also existing insufficiency like the misidentifying of thin cirrus. Fortunately, the scattering correction method through optical path-length is an effective supplement to O2-A band cloud screening as it can improve CO2 retrieval bias due to cirrus scattering, combining them to account for cloud contamination is a promising method. Simultaneously, undetermined-I scene should be pay more attention since these undetermined scene contained abundance scene covered by cirrus.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第8期1-9,共9页 Acta Optica Sinica
基金 国家自然科学基金(41175037)
关键词 大气光学 全球变化 温室气体 云污染 大气散射 atmospheric optics global change greenhouse gas cloud contamination atmospheric scattering
  • 相关文献

参考文献33

  • 1R Pachauri,A Reisinger.IPCC Fourth Assessment Report[R].IPCC,Geneva,2007:5-15.
  • 2P J Rayner,D M O′Brien.The utility of remotely sensed CO2 concentration data in surface source inversions[J].Geophysical Research Letters,2001,28(1):175-178.
  • 3S Houweling,F M Breon,I Aben,et al..Inverse modeling of CO2 sources and sinks using satellite data:A synthetic inter-comparison of measurement techniques and their performance as a function of space and time[J].Atmospheric Chemistry and Physics,2004,4:523-538.
  • 4S C Olsen,J T Randerson.Differences between surface and column atmospheric CO2 and implications for carbon cycle research[J].Journal of Geophysical Research:Atmospheres,2004,109(D2).
  • 5C E Miller,D Crisp,P L DeCola,et al..Precision requirements for space-based XCO2 data[J].Journal of Geophysical Research,2007,112(D10):D10314.
  • 6A Kuze,H Suto,M Nakajima,et al..Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring[J].Applied Optics,2009,48(35):6716-6733.
  • 7D Crisp,R M Atlas,F-M Breon,et al..The orbiting carbon observatory (OCO) mission[J].Advances in Space Research,2004,34(4):700-709.
  • 8M Buchwitz,M Reuter,H Bovensmann,et al..Carbon monitoring satellite (CarbonSat):Assessment of atmospheric CO2 and CH4 retrieval errors by error parameterization[J].Atmospheric Measurement Techniques,2013,6(12):3477-3500.
  • 9LIU Yi,YANG DongXu,CAI ZhaoNan.A retrieval algorithm for TanSat XCO_2 observation: Retrieval experiments using GOSAT data[J].Chinese Science Bulletin,2013,58(13):1520-1523. 被引量:30
  • 10施海亮,熊伟,李志伟,罗海燕.空间外差光谱仪相位误差修正[J].光学学报,2013,33(3):313-318. 被引量:12

二级参考文献121

  • 1贺应红,郑玉臣,程娟,左浩毅,杨经国.米氏散射激光雷达近场距离校正函数曲线拟合法修正[J].光学学报,2005,25(3):289-292. 被引量:18
  • 2王向川,饶瑞中.大气气溶胶和云雾粒子的激光雷达比[J].中国激光,2005,32(10):1321-1324. 被引量:26
  • 3叶松,方勇华,洪津,杨伟锋,乔延利.空间外差光谱仪系统设计[J].光学精密工程,2006,14(6):959-964. 被引量:40
  • 4叶松,方勇华,洪津,乔延利,熊伟.空间外差光谱技术实验研究[J].光电工程,2007,34(5):84-88. 被引量:17
  • 5Y. Sasano. Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993[J]. Appl. Opt, 1996, 35(24): 4941-4952.
  • 6E. Giannakaki, D. S. Balis, V. Amiridis et al. Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station[J]. Atmos. Chem. Phys, 2007, 7(21): 5519-5530.
  • 7J. D. Klett. Stable analytical inversion solution for processing lidar returns[J]. Appl. Opt, 1981, 20(2) : 211-220.
  • 8J. Harlander. Spatial Heterodyne Spectroscopy- Interferometric Performance at Any Wavelength Without Scanning [ D]. Madison: University of Wisconsin, 1991.
  • 9J. M. Harlander, F. L. Roesler, J. G. Cardon et al.. SHIMMER : a spatial heterodyne spectrometer for remote sensing o- earth's middle atmosphere [J]. Appl. Opt. , 2002, 41 (7) : 1343-1352.
  • 10Yunlong Lin, G. Shepherd, B. Solheim et al.. Introduction to spatial heterodyne observations of water (SHOW) project and its instrument development [C]. ITSC-X Proceedings Beiiing (Poster), 2005.

共引文献112

同被引文献41

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部