期刊文献+

基于对称楔形干涉腔的高光谱成像方法 被引量:5

Hyperspectral Imaging Based on Symmetric Wedgy Interferometric Cavity
原文传递
导出
摘要 高光谱成像技术在众多领域中具有广泛的应用潜力,仪器的轻小型化能够助力该技术的推广。为探索新的干涉高光谱成像技术方案,研究了一种新型的基于对称楔形干涉腔的高光谱成像方法。通过在成像系统中加入对称楔形干涉器,实现干涉光程差与视场角的关联调制。通过分析系统的工作原理,设计了系统的干涉成像光路模型,并对干涉腔楔角、反射率、成像物镜等主要参数和成像推扫方式进行了讨论分析,采用Zemax光学设计软件对干涉成像光路进行了仿真研究。研制了原理样机,对激光光源和实际场景目标进行了光谱成像实验,得到了较好的实验结果。研究表明,该高光谱成像方法不仅具有高光通量、高光谱分辨率的优点,而且能够有效实现仪器的轻小型化。 Interferometric hyperspectral imaging is a popular technology with wide application in many fields. Miniaturization of instrument is conducive to promotion of the imaging technology. In order to explore a new technical scheme, a new method of interferometric hyperspectral imaging based on symmetric wedgy cavity is researched. A symmetric wedgy cavity is inserted into the imaging system to obtain the modulating relationship between optical path difference and field angle. By analyzing the working principle of the system, a model of the imaging system is designed while the major parameters such as wedge angle of interferometric cavity, reflectance, object lens, and the push-broom mode are discussed. Moreover, the proposed method is verified by the simulation with Zemax. A prototype is developed and good experimental results of lasers and actual scene objects are obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第8期101-111,共11页 Acta Optica Sinica
基金 国家自然科学基金(61475072 61205016 U1231112) 教育部博士点基金(20123219120021 20133219110008) 中国科学院天文光学技术重点实验室开放课题
关键词 成像系统 高光谱成像 对称楔形腔 干涉腔 imaging system hyperspectral imaging symmetric wedgy cavity interferometric cavity
  • 相关文献

参考文献26

二级参考文献149

共引文献135

同被引文献42

  • 1HuiChen.Gradient-Based Approach for Fine Registration of Panorama Images[J].Journal of Computer Science & Technology,2004,19(5):691-697. 被引量:3
  • 2高莹莹,杨建峰,马晓龙,陈浩锋.基于Fourier-Mellin算法的干涉图像配准[J].光学精密工程,2007,15(9):1415-1420. 被引量:22
  • 3Cabib D, Buckwald R A, Garini Y, et al.. Spatially resolved Fourier transform spectroscopy (spectral imaging): A powerful tool for quantitative analytical microscopy[C]. SPIE, 1996, 2678: 278-291.
  • 4Harvey A R, Holmes D W F. Birefringent Fourier-transform imaging spectrometer[J]. Optics Express, 2004, 22(12): 5368-5374.
  • 5Horton R F. Optical design for a high etendue imaging Fourier transform spectrometer[C]. SPIE, 1996, 2819: 300-315.
  • 6Lucey P G,Akagi J. A Fabry-Perot interferometer with a spatially variable resonance gap employed as a Fourier transform spectrometer [C]. SPIE, 2011, 8048: 80480K.
  • 7Gillard F, Ferrec Y, Guerineau N, et al.. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer[J]. JOSA A, 2012, 29(6): 936-944.
  • 8Sicairos M G, Thurman S T, Fienup J R. Efficient subpixel image registration algorithms [J]. Optics Letters, 2008, 33(2): 156-158.
  • 9Ren W Y, Zhang C M, Mu T K, et al.. Spectrum reconstruction based on the constrained optimal linear inverse methods[J]. Optics Letters, 2012, 37(13): 2580-2582.
  • 10黎俊,彭启民,范植华.亚像素级图像配准算法研究[J].中国图象图形学报,2008,13(11):2070-2075. 被引量:40

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部