期刊文献+

一种基于深刻蚀的硅基周期波导微腔 被引量:2

Silicon Photonic Crystal Nanobeam Cavities Fabricated by Deep-Etching Method
原文传递
导出
摘要 研究了一种基于深刻蚀的硅基周期波导一维光子晶体微腔,采用时域有限差分(FDTD)方法对设计的微腔结构进行了模拟分析;讨论了深刻蚀对微腔品质因数的影响,计算表明采用深刻蚀可有效地保持高Q值并能保证微腔的机械强度。采用电子束光刻(EBL)结合感应耦合等离子体(ICP)刻蚀制作了绝缘硅(SOI)的周期波导微腔,使用扫描电子显微镜(SEM)和原子力显微镜(AFM)对器件形貌进行表征,观察到深刻蚀的衬底二氧化硅高度约为80 nm。通过波导光栅耦合光纤输入宽带光源信号对微腔器件进行光学表征,传输光谱测试表明该深刻蚀微腔器件Q值达5×103,插入损耗小于-2 d B。该深刻蚀的硅基周期波导微腔可用于集成光传感器和片上波分复用滤波器等应用。 A silicon photonic crystal nanobeam caivity based on deep-etching method is presented. Using finite difference time domain (FDTD) method, the influence of deep- etching on the Q factor of nanobeam cavities is designed and analyzed. The calculated results show that the deep-etching scheme can keep the high-Q value close to the air-bridge peer, as well as robust mechanical strength. The devices are fabricated on silicon on insulator (SOI) platform using electron beam lithography (EBL) and inductively coupled plasma (ICP). Scanning electron microscope (SEM) and atomic force microscope (AFM) are employed to characterize the morphology of the fabricated nanobeam cavities. The measured transmission spectra indicate that the Q factor of deeply- etched nanobeam cavities surpass 5 × 10^3 with acceptable insertion loss of less than - 2 dB. These deeply-etched nanobeam cavities can find their applications in on-chip optical sensors or optical filters.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第8期165-170,共6页 Acta Optica Sinica
基金 国家自然科学基金(61405177) 浙江省自然科学基金(LY14F030013) 宁波市自然科学基金(2014A610150 2013A610004) 福建省教育厅省属高校专项(JK2013053) 福建省中青年教师教育科研项目(JA13303)
关键词 集成光学 光学器件 光学微腔 光子晶体 周期波导 integrated optics photonic device optical cavity photonic crystal periodic waveguide
  • 相关文献

参考文献3

二级参考文献44

  • 1D.Miller.Device requirements for optical interconnects to silicon chips [J].Proceedings of the IEEE,2009,97(7):1166-1185.
  • 2C.Manolatou,S.G.Johnson,S.Fan et al..High-density integrated optics [J].J.Lightwave Techol.,1999,17(9):1682-1692.
  • 3W.L.Barnes,A.Dereux,T.W.Ebbesen.Surface plasmon subwavelength optics [J].Nature,2003,424(6950):824-830.
  • 4P.Berini.Long-range surface plasmon polaritons [J].Adv.Opt.Photon.,2009,1(3):484-588.
  • 5L.Tong,J.Lou,E.Mazur.Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides [J].Opt.Express,2004,12(6):1025-1035.
  • 6马春生,刘式墉.光波导模式理论[M].长春:吉林大学出版社,2007.36-37.
  • 7G.T.Reed,A.P.Knights.Silicon Photonics:An Introduction [M].Chichester:John Wiley,2004.52-53.
  • 8J.Takahara,S.Yamagishi,H.Taki.Guiding of a one-dimensional optical beam with nanometer diameter [J].Opt.Lett.,1997,22(7):475-477.
  • 9Vahala K. Optical Microcavities. Singapore: World Scientific, 2004.
  • 10Vahala K. Nature, 2003, 424: 839-846.

共引文献6

同被引文献16

  • 1胡小永,江萍,杨宏,龚旗煌.超快速可调谐有机光子晶体滤波器[J].激光与光电子学进展,2007,44(2):23-23. 被引量:1
  • 2沈晓霞,蔡履中,董国艳,等.光子晶体LED结构优化设计对光提取效率的影响[J].中国激光,2014,41(s1):s106006.
  • 3Yablonovitch E, Gmitter T J, Leung K M. Photonic band structure: the face-centered-cubic case employing nonspherical atoms[J]. Physical Review Letters, 1991, 67(17): 2295-2298.
  • 4Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.
  • 5Zhang Xiangdong. Absolute negative refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals[J]. Physical Review B, 2004, 70(20): 205102.
  • 6Zhang Xiangdong. Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal- based superlens[J]. Physical Review B, 2004, 70(19): 195110.
  • 7Li Heng, Wang Jingxia, Lin Hui, et al.. Amplification of fluorescent contrast by photonic crystals in optical storage[J]. Advanced Materials, 2010, 22(11): 1237-1241.
  • 8Wang Ting, Liang Binming, Jiang Qiang, et al.. Design and verification of the polarization beamsplitter based on photonic crystals[J]. Optics Communications, 2015, 351: 40-44.
  • 9Ruan Zhichao, He Sailing. Open cavity formed by a photonic crystal with negative effective index of refraction[J]. Optics Letters, 2005, 30(17): 2308-2310.
  • 10Chen Jiabi, Wang Yan, Jia Baohua, et al.. Observation of the inverse Doppler effect in negative-index materials at optical frequencies[J]. Nature Photonics, 2011, 5(4): 239-242.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部