期刊文献+

基于可见反射光谱和遗传区间偏最小二乘法的血迹年龄预测研究 被引量:5

Accurate Age Estimation of Bloodstains Based on Visible Reflectance and Genetic Algorithm Interval Partial Least Squares
原文传递
导出
摘要 精确的血迹年龄预测具有重大的法医学价值。利用可见反射光谱技术与偏最小二乘法(PLS)相结合分析预测血迹年龄。遗传算法与偏最小二乘法相结合被用来选择有效光谱区间。与全光谱PLS模型相比较,建立在优化光谱区间的遗传区间偏最小二乘法(GA-i PLS)模型具有更好的预测能力。结果表明GA-i PLS能合理地选择有效光谱区间,提高预测能力。在考虑取自不同个体血迹特异性的情况下,建立在2.00~48.00 h时间段和48.00~1080.00 h时间段的GA-i PLS模型的相关系数(Rp)、预测标准误差(RMSEP)和剩余预测偏差(RPD)分别为0.9949/0.9924、1.59 h/43.56 h、10.32/8.42。两个GA-i PLS模型的结合可代替建立在2.00~1080.00 h时间段的GA-i PLS模型精确预测2.00~1080.00 h时间段的血迹年龄。结果表明可见反射光谱与GA-i PLS模型在法医学领域可成为一种可靠的精确预测血迹年龄的方法。 Accurate age estimation of bloodstains can provide enormous forensic value. Visible reflectance spectroscopy technique combined with partial least squares (PLS) is applied to accurately estimate the age of bloodstains for forensic purposes. Genetic algorithm (GA) combined with PLS is used to select the most efficient spectral intervals. The genetic algorithm interval partial least squares (GA-iPLS) models built in the optimal intervals, present better predictive capability than full-spectrum PLS model. GA-iPLS can validly select desirable intervals and improve predictive ability. Considering the effect of the specificity of bloodstains on models, the GA- iPLS models built in age period from 2.00 h to 48.00 h and in age period from 48.00 h and 1080.00 h are achieved with correlation coefficient (Rp) of 0.9949/0.9924, root-mean-square error of prediction (RMSEP) of 1.59 h/43.56 h, residual predictive deviation (RPD) of 10.32/8.4243 respectively, which can be used to accurately predict the age of bloodstains from 2.00 h to 1080.00 h instead of GA-iPLS model in 2.00-1080.00 h. The results demonstrate that visible reflectance spectroscopy combined with GA-iPLS will be a reliable tool to accurately estimate the age of bloodstains for forensic practical applications.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第8期369-374,共6页 Acta Optica Sinica
基金 国家自然科学基金(60878063) 广东省中医药项目(2008233)
关键词 光谱学 年龄预测 遗传区间偏最小二乘法 可见反射光谱 法医学 spectroscopy age estimation genetic algorithm interval partial least squares visible reflectance spectroscopy forensic
  • 相关文献

参考文献22

  • 1S H James,P E Kish,T P Sutton.Principles of Bloodstain Pattern Analysis:Theory and Practice[M].Boca Raton:CRC Press,2005:219-225.
  • 2G Edelman,T G van Leeuwen,M C Aalder.Hyperspectral imaging for non-contact analysis of forensic traces[J].Forensic Science International,2012,223(1):28-39.
  • 3Y Fujita,K Tsuchiya,S Abe,et al..Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy:Long-term controlled experiment on the effects of environmental factors[J].Forensic Science International,2005,152(1):39-43.
  • 4G Edelman,V Manti,S M van Ruth,et al..Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy[J].Forensic Science International,2012,220(1):239-244.
  • 5B Li,P Beveridge,W T O′Hare,et al..The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis[J].Science and Justice,2013,53(3):270-277.
  • 6W R Premasiri,J C Lee,L D Ziegler.Surface-enhanced Raman scattering of whole human blood,blood plasma,and red blood cells:Cellular processes and bioanalytical sensing[J].Journal of Physical Chemistry B,2012,116(31):9376-9386.
  • 7S Boyd,M F Bertino,S J Seashols.Raman spectroscopy of blood samples for forensic applications[J].Forensic Science International,2011,208(1):124-128.
  • 8R H Bremmer,A Nadort,T G van Leeuwen,et al..Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy [J].Forensic Science International,2011,206(1):166-171.
  • 9E K Hanson,J Ballantyne.A blue spectral shift of the hemoglobin soret band correlates with the age (time since deposition) of dried bloodstains[J].PLoS one,2010,5(9):12830-12840.
  • 10B Li,P Beveridge,W T O′ Hare,et al..The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer,spectral pre-processing and linear discriminant analysis[J].Forensic Science International,2011,212(1):198-204.

二级参考文献137

共引文献134

同被引文献63

  • 1凌明胜,钱志余.血糖浓度光声光谱检测技术的研究[J].生物医学工程研究,2006,25(4):217-219. 被引量:3
  • 2李庆波,张鲁,汪日燕,胡小唐,徐可欣.葡萄糖水溶液浓度的近红外光谱测量法——人体血糖浓度无创伤测量方法基础研究[J].中国生物医学工程学报,2004,23(6):602-606. 被引量:10
  • 3牟建楼,王颉,张伟,陈志周.乙醇的测定方法综述[J].酿酒,2006,33(2):46-48. 被引量:49
  • 4侯振雨,蔡文生,邵学广.主成分分析-支持向量回归建模方法及应用研究[J].分析化学,2006,34(5):617-620. 被引量:39
  • 5Narahara C D, Ishan B, Gajendra P S, et al.. Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements[J]. Analytical and Bioanalytical Chemistry, 2011,400(9): 2871-2880.
  • 6Ansari R R, Bfickle S, Rovati L. New optical scheme for a polarimetric-based glucose sensor[J]. Journal of Biomedical Optics, 2004, 9 (1): 103-115.
  • 7Larin K V, Eledrisi M S, Motamedi M, et al.. Non-invasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects[J]. Diabetes Care, 2002, 25(12): 2263-2267.
  • 8Li Q B, Li L N, Zhang G J. A nonlinear model for calibration of blood glucose noninvasive measurement using near infrared spectroscopy [J]. Infrared Physics & Technology, 2010, 53(5): 410-417.
  • 9Bednov A A, Savateeva E V, Oraevsky A A. Glucose monitoring in whole blood by measuring laser-induced acoustic profiles[C]. SPIE, 2003, 4960: 21-29.
  • 10Kottmann J, Rey J M, Sigrist M W. New photoacoustic cell design for studying aqueous solutions and gels[J]. Review of Scientific Instruments, 2011, 82(8): 084903.

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部