期刊文献+

基于社会距离的下一代网络带宽资源分配方法研究 被引量:1

Social Distance-based Bandwidth Resource Allocation Approach to Next Generation Networks
原文传递
导出
摘要 研究了下一代网络中瓶颈链路的带宽资源分配问题,利用融入了社会距离参数的用户效用函数,使得用户的带宽资源分配问题转变成一个在不等式约束条件下的最优化问题.由于最优化问题的复杂性,最优的分配带宽是用数值方法估计的,相关的结果证明了社会距离参数在带宽分配上的重要影响.利用社会距离值对实际网络拓扑中节点进行分类聚合,证明了各组间的最优化带宽分配与网络拓扑中节点数目及分组中节点数目门限值存在相互影响的关系,算法有利于更好地对网络带宽资源进行分配. The bandwidth allocation problem for the bottleneck link in next generation networks is studied. By introducing the social distance parameter into the utility function, bandwidth resource allocation prOblem for users is turned into a optimal one with the inequation constrains. Due to the complexity of this optimal problem, the numerical method is used to estimate the optimal bandwidth allocated. The related results demonstrates the impact of social distance parameter on bandwidth allocation. The social distance value is exploited to cluster the nodes in the network topology. The theory analysis indicates that there exit the significant relationships among the optimal bandwidth of each group, the number of the nodes in the network, and the threshold of the nodes' number in each group. This algorithm proposed can better allocate the network bandwidth resource.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期5-11,共7页 Acta Scientiarum Naturalium Universitatis Nankaiensis
关键词 下一代网络 带宽分配 社会距离 效用函数 next generation networks bandwidth allocation social distance utility function
  • 相关文献

参考文献1

二级参考文献25

  • 1A. Soule, F. Silveira, H. Ringberg, C. Diot, "Challenging the supremacy of traffic matrices in anomaly detection", in Proc. of ACM IMC, 2007.
  • 2P:. Soule, A. Iakhina, N. Taft et al., "Traffic matrices: Balanc- ing measurements, inference and modeling", in Proc. of ACM SIGMETRICS, 2005.
  • 3A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kola- cyzk, N. Taft, "Structural analysis of network traffic flows", in Pvoc. of ACM SIGMETRICS, 20(}4.
  • 4L. Guo, "LSSP: A novel local segment shared protection for multi-domain optical mesh networks", Computer Communica- tions, Vol.30, pp.1794-1801, June 2007.
  • 5K. Papagiannaki, N. Taft, A. Lakhina, alstributed approach to measure traffic matrix", in Proc. of A CM IMC, 2004. (5-{-1).
  • 6D. Jiang, Z. Xu, Z. Chen et al., "Joint time-frequency sparse estimation of large-scale network traffic", Conputer Networks Vol.55, No.10t pp.3533-3547, 2011.
  • 7L. Guo, J. Cao, H. Yu et al., "Path-based routing provisioning with mixed shared protection in WDM mesh networks", Journal of Lightwave Technology, Vol.24, pp.1129-1141, Mar. 2006.
  • 8Y. Zhang, M. Roughan, C. Lund, D. Donoho, "An information theoretic approach to traffic matrix estimation", in Proc. of ACM SIGCOMM, 2003.
  • 9Y. Zhang, M. Roughan, N. Duffield, A. Greenberg, "Fast ac- curate computation of large-scale IP traffic matrices from link loads", A CM SIGMETRICS Performance Evaluation Review, Vol.31, No.3, pp.206-217, 2003.
  • 10J. Ni, S. Tatikonda, E.M. Yeh, "A large-scale distributed traf- fic matrix estimation algorithm", in Proc. of IEEE Globecom, 2006.

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部