期刊文献+

关于弱正张量性质的研究(英文)

A Study on Properties of the Weakly Positive Tensor
原文传递
导出
摘要 分别给出了一些条件使得弱正张量、非负张量的谱半径满足几何单性;再者,研究了弱正张量和素张量的关系. Firstly some conditions are given to ensure the geometric simplicity of the spectral radius of weakly positive tensors. Secondly additional conditions are imposed on nonnegative tensors to guarantee the geometric simplicity of the spectral radius. Lastly the relation between weakly positive tensors and primitive tensots is further studied.
作者 王翔 吴伟
机构地区 天津大学理学院
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期80-84,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 Supported by the Grant of NSF of China(10771159)
关键词 弱正张量 变半径 几何单性 weakly positive tensor spectral radius the geometric simplicity
  • 相关文献

参考文献10

  • 1Qi L. Eigenvalues of a real supersymrnetric tensor[J]. Symbolic Comput, 2005, 40: 1 302-1 324.
  • 2Lira L H. Singular values and eigenvalues of tensors: a variational approach: CAMSAP 2005: proceedings of the IEEE International Workshop on Computational Advances of Multi-tensor Adaptive Processing, Mexico, Dec 13- 15, 2005[C]. Mexico:[s.n.], 2005.
  • 3Chang K, Pearson K, Zhang T. Perron Frobenius Theorem for nonnegative tensors[J]. Comm Math Sci, 2008, 6: 507-520.
  • 4Friedland S, Gaubert S, Han L. Perron Frobenius theorem for nonnegative multilinear forms and extensions[J]. Linear Algebra and Its Applications, 2013, 438(2): 738-749.
  • 5Hu S, Huang Z, Qi L. Finding the spectral radius of a nonnegative tensor[EB/OL]. [2014-07-21]. http: //arX- iv. org/abs/llll. 2138.
  • 6Pearson K. Essentially positive tensors[J]. Int J Algebra, 2010, 4: 421-427.
  • 7Chang K, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors[J]. SIAM J Matrix Anal Appl, 2011, 32: 806-819.
  • 8Liping Zhang,Liqun Qi,Yi Xu.LINEAR CONVERGENCE OF THE LZI ALGORITHM FOR WEAKLY POSITIVE TENSORS[J].Journal of Computational Mathematics,2012,30(1):24-33. 被引量:3
  • 9Yang Y, Yang Q. A note on the geometric simplicity of the spectral radius of nonnegative irreducible tensors[EB/ OL]. [2014-07-21]. http: //arXiv. org/abs/1101. 2479.
  • 10Yang Y, Yang Q. Further results for Perron-Frobenius Theorem for nonnegative tensors[J]. SIAM J Matrix Anal Appl, 2010, 31:2 517-2 530.

二级参考文献17

  • 1S.R. Bulb and M. Pelillo, New bounds on the clique number of graphs based on spectral hypergraph theory, in: T. Stfitzle ed., Learning and Intelligent Optimization, Springer Verlag, Berlin, (2009), 45-48.
  • 2K.C. Chang, K. Pearson and T. Zhang, Perron Frobenius Theorem for nonnegative tensors, Commu. Math. Sci., 6 (2008), 507-520.
  • 3K.C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl., 350(2009), 416-422.
  • 4K.C. Chang, K. Pearson and T. Zhang, Primitivity, the convergence of the NZQ method, and the largest eigenvalue for nonnegative tensors, SIAM J. Matrix Anal. A., 32 (2011), 806-819.
  • 5S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, to appear in: Linear Algebra Appl.
  • 6C. Hillar and L.-H. Lim, Most tensor problems are NP hard, arXiv:0911.1393, 10 Nov 2009.
  • 7L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Addaptive Processing (CAMSAP'05), Vol. 1, IEEE Computer Society Press, Piscataway, NJ, 2005, 129-132.
  • 8C. Ling, J. Nie, L. Qi and Y. Ye, Bi-quadratic optimization over unit spheres and semidefinite programming relaxations, SIAM J. Optimiz., 20 (2009), 1286-1310.
  • 9Y. Liu, G. Zhou and N.F. Ibrahim, An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor, J. Comput. Appl. Math., 235 (2010), 286-292.
  • 10M. Ng, L. Qi and C. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. A., 31 (2009), 1090-1099.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部