期刊文献+

泊松冲击下带有一个贮备部件和修理工的两部件并联可修系统的可靠性分析(英文)

RELIABILITY ANALYSIS OF A TWO-UNIT-PARALLEL SYSTEM SUSTAINED BY A COLD STANDBY UNIT AND REPAIRMAN UNDER POISSON SHOCKS
下载PDF
导出
摘要 研究了由三个同型部件,两个部件并联,一个作冷贮备的可修系统在随机冲击下的可靠性问题.假设冲击流以泊松过程到达,且不同次的冲击量是独立同分布的,都服从某一固定分布.当冲击到达时,它会对系统中工作的部件独立地产生影响,但不对贮备部件产生影响,且与其历史无关.当冲击量大于工作部件的阈值时,工作部件发生故障,工作部件的阈值为具有某一确定分布的非负随机变量.修理工可进行多重休假.当工作部件发生故障,贮备部件立即开始工作,当所有部件都故障时,系统故障.此外,还假设部件的修理时间和修理工的休假时间为一般的连续分布.利用补充变量方法和向量Markov过程理论,显式地给出了系统可靠度函数、系统平均工作时间和系统稳态可用度等可靠性指标,最后,我们给出了一个数值模拟例子来验证所给出的结果. This paper analyses the reliability of a two-unit-parallel system consisting of two units in parallel, one standby unit, one switch and a repairman who might take multiple vacations. Additionally, there is one kind of shocks that arrive according to a Poisson process. The magnitude of shocks is assumed to be i.i.d, random variables. Whenever the magnitude of the shock is greater than the threshold of the operating unit, the operating unit fails. When an operating unit fails, the cold standby unit will start to operate immediately. It is assumed that the repair time of the unit and the vacation time of the repairman are non-negative random variables following general continuous distributions. Using the supplementary variable method and the vector Markov process theory, some reliability indices such as the steady-state availability of the system, the steady-state failure frequency of the system and the mean time to the first failure of the system etc. are explicitly obtained. Finally, a numerical example is given to validate the derived indices.
作者 吴清太 张瑾
出处 《南京大学学报(数学半年刊)》 CAS 2015年第1期1-20,共20页 Journal of Nanjing University(Mathematical Biquarterly)
基金 Supported by the National Science Foundation of China under Grant No.71173109 the Fundamental Research Fund for the Central University of China under Grant No.KYZ201424
关键词 冲击模型 多重休假 向量Markov过程 POISSON过程 可靠性指标 shock model, multiple vacation, vector Markov process, reliability indices
  • 相关文献

参考文献3

二级参考文献20

  • 1Barlow, R.E. and Proschan, F., Statistical Theory of Reliability and Life Testing, Hot, Rinehart and Winston, Inc., New York, 1975.
  • 2Shanthilumar, J.G. and Sumita, U., General shock models associated with correlated renewal sequences, J. of Appl. Prob., 20(1983), 600-614.
  • 3Shanthilumar, J.G. and Sumita, U., Distrubution properties of the system failure time in a general shock model, Adv. Appl. Prob., 16(1984), 363-377.
  • 4Wang, G.J. and Zhang, Y.L., A shock model with two-type failures and optimal replacement policy, International Journal of Systems Science, 36(4)(2005), 209-214.
  • 5Kontoleon, J.M., Reliability determination of a r-successive-out-of-n: F system, IEEE Transactions on Reliability, 29(1980), 437-440.
  • 6Zhang, Y.L. and Lain, Y., Reliability of consecutive-k-out-of-n: G repairable system, International Journal of Systems Science, 29(12)(1998), 1375-1379.
  • 7Utkin, L.V., Reliability models of m-out-of-n systems under incomplete information, Computers and Operations Research, 31(2004), 1681-1702.
  • 8Ross, S.M., Stochastic Processes, Wiley, New York, 1982.
  • 9Barlow R E, and Proschan F. Statistical Theory of Reliability and Life Testing: Probability Models [M]. New York: Hot, Rinehart and Winston, Inc., 1975.
  • 10Shanthilumar J G, and Sumita U. General shock models associated with correlated renewal sequences [J]. J. of Appl. Prob., 1983, 20(3): 600-614.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部