摘要
Hilbert空间的K-框架是框架的一种推广,并且与经典框架有许多差别.本文讨论了K-框架与算子K的值域的关系,利用K-框架的合成算子和算子K对K-框架的最优界进行了刻画.此外,我们引入K-对偶的概念,给出了K-对偶的若干性质,并研究了Parseval K-框架的K-对偶的唯一性.
K-frames in Hilbert spaces are the generalizations of frames and there are many differences between K-frames and ordinary frames. In this paper, we discuss the relation between a K-frame and the operator K, and characterize the optimal bounds of a K-frame by using the synthesis operator and the operator K. We introduce the definition of K-dual of a K-frame and obtain some properties of K-duals. Also, the uniqueness of the K-dual for a Parseval K-frame is investigated.
出处
《南京大学学报(数学半年刊)》
CAS
2015年第1期74-88,共15页
Journal of Nanjing University(Mathematical Biquarterly)
基金
国家自然科学基金(1171151)
江苏省科学基金(BK2011720)资助课题