期刊文献+

Hilbert空间上的K-框架与K-对偶 被引量:4

K-FRAMES AND K-DUALS IN HILBER SPACES
下载PDF
导出
摘要 Hilbert空间的K-框架是框架的一种推广,并且与经典框架有许多差别.本文讨论了K-框架与算子K的值域的关系,利用K-框架的合成算子和算子K对K-框架的最优界进行了刻画.此外,我们引入K-对偶的概念,给出了K-对偶的若干性质,并研究了Parseval K-框架的K-对偶的唯一性. K-frames in Hilbert spaces are the generalizations of frames and there are many differences between K-frames and ordinary frames. In this paper, we discuss the relation between a K-frame and the operator K, and characterize the optimal bounds of a K-frame by using the synthesis operator and the operator K. We introduce the definition of K-dual of a K-frame and obtain some properties of K-duals. Also, the uniqueness of the K-dual for a Parseval K-frame is investigated.
作者 李亮 李鹏同
出处 《南京大学学报(数学半年刊)》 CAS 2015年第1期74-88,共15页 Journal of Nanjing University(Mathematical Biquarterly)
基金 国家自然科学基金(1171151) 江苏省科学基金(BK2011720)资助课题
关键词 框架 K-框架 合成算子 框架界 K-对偶 frame, K-frame, synthesis operator, frame bound, K-dual
  • 相关文献

参考文献16

  • 1Gabaxdo J P and Hart D G. Frames associated with Measureable Spaces. Adv. Comput. Math., 2003, 18:127-147.
  • 2Casazza P G, Kutyniok G and Li S. bSasion Frames and Distributed Processing. Appl. Comput. Harmon. Anal., 2008, 25: 114-132.
  • 3Casazza P G, Han D G and Larson D R. Frames for Banach Spaces. Contemp. Math., 1999 247:149-182.
  • 4Christensen O. Frames and Pseudo-inverse. J. Math. Anal. Appl., 1995, 195:401-414.
  • 5Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhauser, 2003.
  • 6Gvruta L. Frames for Operators. Appl. Comp. Harm. Anal., 2012, 32:139-144.
  • 7Daubechies I, Grossmann A and Meyer Y. Painless Nonorthogonal Expansions. J. Math. Phys. 1986, 27:1271-1283.
  • 8Douglas R G. On Majorization, Factorization and Range Inclusion of Operators on Hilbert Space Proc. Amer. Math. Soc., 1966, 17(2):413-415.
  • 9Duffin R J and Schaeffer A C. A Class of Nonharmonic Fourier Series. Trans. Amcr. Math. Soc. 1952,72:341-366.
  • 10Frank M and Larson D R. Frames in Hilbert C*-modules and C*-algebras. J. Operator Theory 2002, 48; 273-314.

二级参考文献12

  • 1Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72:341-366.
  • 2Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27(1) 271-1283.
  • 3Casazza P. C., The art of frame theory, Taiwan Residents J. of Math., 2000, 4(2): 129-201.
  • 4Christensen O., An Introduction to Frames and Riesz Bases, Birkhuser, Boston, 2003.
  • 5Candes E. J., Donoho D. piecewise C2 singularities, Heath R. W., Paulraj A. J Signal Process., 2002, 50:.
  • 6L., New tight frames of curvelets and optimal representations of objects with Comm. Pure Appl. Math., 2004, 56: 216-266. ,.
  • 7Linear dispersion codes for MIMO systems based on frame theory, IEEE Trans. 2429-2441.
  • 8B61cskei H., Hlawatsch F., Feichtinger H. G., Frame-theoretic analysis of oversampled filter banks, IEEE Trans Signal Process., 1998, 46: 3256-3268.
  • 9Gavruta L., Perturbation of K-frames, Bul. St. Univ. "Politehnica" Timisoara, Seria Mat. -Fiz, Tom, 2011, 56(70): 48-53.
  • 10Gavruta L., New results on frames for operators, Proc. Intern. Conf. Sciences, 11-12 Nov. 2011, Oradea, Accepted.

共引文献10

同被引文献20

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部