期刊文献+

基于染色体易位的动态进化算法 被引量:1

Chromosomal translocation-based Dynamic evolutionary algorithm
下载PDF
导出
摘要 针对采用二进制编码的进化算法在函数优化过程中会因为维度之间的相互干扰,导致部分低阶模式出现无法进行有效重组的现象,提出一种新的结合细胞学研究成果的进化算法——染色体易位的动态进化算法(CTDEA)。算法通过构建基因矩阵来模拟有机染色体在细胞内的结构化过程,并在基因矩阵的基础上对出现同质化的染色体短列实施模块化的易位操作,以此来维护种群的多样性;同时通过个体适应度划分种群的方式来维护精英个体,确保个体间的竞争压力,提升算法的寻优速度。实验结果表明,该进化算法与已有的遗传算法(GA)和分布估计算法相比较,在维护种群多样性方面有较大改进,能够将种群的多样性保持在0.25左右;且在寻优的精度、稳定性以及速度上也有明显的改进和提高。 When traditional binary-coded evolutionary algorithms are applied to optimize functions, the mutual interference between different dimensions would prevent effective restructuring of some low-order modes. A new evolutionary algorithm, called Dynamic Chromosomal Translocation-based Evolutionary Algorithm (CTDEA), was proposed based on cytological findings. This algorithm simulated the structuralized process of organic chromosome inside cells by constructing gene matrixes, and realized modular translocations of homogeneous chromosomes on the basis of gene matrix, in order to maintain the diversity of populations. Moreover, the individual fitness-based population-dividing method was adopted to safeguard elite populations, ensure competitions among individuals and improve the optimization speed of the algorithm. Experimental results show that compared with existing Genetic Algorithm (GA) and distribution estimation algorithms, this evolutionary algorithm greatly improves the population diversity, keeping the diversity of populations around 0.25. In addition, this algorithm shows obvious advantages in accuracy, stability and speed of optimization.
出处 《计算机应用》 CSCD 北大核心 2015年第9期2584-2589,2623,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(10971060) 湖南省教育厅重点项目(10A074 14C0781)
关键词 染色体易位 进化算法 基因矩阵 模块化 函数优化 chromosomal translocation evolutionary algorithm gene matrix modularization function optimization
  • 相关文献

参考文献2

二级参考文献12

  • 1袁晓辉,袁艳斌,王乘,张勇传.一种新型的自适应混沌遗传算法[J].电子学报,2006,34(4):708-712. 被引量:48
  • 2董朝阳,孙树栋.基于免疫遗传算法的工艺设计与调度集成[J].计算机集成制造系统,2006,12(11):1807-1813. 被引量:10
  • 3P Larranaga, J A Lozano. Estimation of distribution algorithms: a new tool for evolutionary computation[ M ]. Boston: Kluwer Academic Publishers, 2002.
  • 4J M Pena,V Robles,P Larranaga, et al. GA-EDA: hybrid evolutionary algorithm using genetic and estimation of distribution algorithms[ A]. The 17th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems[ C ]. Heidelberg: Springer Berlin, 2004, 3029: 361 - 371.
  • 5J Sun, Q Zhang, E Tsang. DE/EDA: a new evolutionary algorithm for global optimisation[ J]. Information Sciences, 2005, 169(3 - 4) :249 - 262.
  • 6P Koumoutsakos, J Ocenasek, N Hansen, et al. A mixed bayesian optimization algorithm with variance adaptation[ A]. The 8th International Conference on Parallel Problem Solving from Nature[C]. Heidelberg: Springer Berlin, 2004,3242:352 - 361.
  • 7R E Leonardo, T R P. Aurora. An incremental approach for niching and building block detection via clustering [ A ]. Proceedings of the Seventh International Conference on InteUigent Systems Design and Applications [ C ] NJ: IEEE Piscataway, 2007 : 303 - 308.
  • 8W S Dong, X Yao. NichingEDA: utilizing the diversity inside a population of EDAs for continuous optimization [ A ]. IEEE Congress on Evolutionary Computation [ C ] NJ: IEEE Piscataway, 2008. 1260 - 1267.
  • 9J Madera, E Alba, A Ochoa. A parallel island model for estimation of distribution algorithms[A]. Towards a New Evolutionary Computation [ C ]. Heidelberg: Springer Berlin, 2006, (192) : 159 - 186.
  • 10R M Selvi,R Rajaram. Performance study of mutation operator in genetic algorithms on anticipatory scheduling [ A ]. Proceedings of the International Conference on Computational Intelligence and Multimedia Applications[ C] NJ: IEEE Piscataway, 2007:511 - 515.

共引文献16

同被引文献7

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部