期刊文献+

基于灰色系统校正-小波神经网络的光伏功率预测 被引量:41

Photovoltaic Output Prediction Based on Grey System Correction-Wavelet Neural Network
下载PDF
导出
摘要 为提高非理想天气条件下的光伏功率预测精度,提出基于灰色系统校正-小波神经网络(wavelet neural network,WNN)的预测方法。首先以基于相似日算法的WNN进行逐时功率预测,并进行累加获得日累加功率。根据光伏出力历史数据,确定各广义天气类型的平均偏差比,并以平均偏差比进行平滑处理后的相邻日功率建立离散灰色系统模型(discrete gray model,DGM),进行日总功率预测并获得及其判断区间。最后以日总功率值判断区间为标准对累加功率值进行校正,得到校正后的各时段的预测值。算例结果验证了所提方法的有效性。 To improve prediction accuracy of photovoltaic power under non-ideal weather conditions, a wavelet neural network(WNN) prediction model of PV output is proposed based on correction of gray system model. Firstly, hourly power is predicted with WNN based on similar day algorithm, daily accumulative power is obtained by summing the hourly powers. Then, average deviation ratio of each generalized type of weathers is determined according to historical photovoltaic output data. Adjacent daily power is smoothed with average deviation ratio used to build discrete gray model(DGM), to obtain daily total power and its judgment interval. Finally, daily accumulative power is corrected with judgment interval as reference to obtain post-correction hourly power. Effectiveness of the method is validated with a practical example.
出处 《电网技术》 EI CSCD 北大核心 2015年第9期2438-2443,共6页 Power System Technology
基金 "安徽省科技攻关项目(12010202036) 2014江苏电力公司科技项目"的资助
关键词 小波神经网络 灰色系统模型 相似日 相邻日 平均偏差比 wavelet neural networks grey system model similar days adjacent days average deviation ratio
  • 相关文献

参考文献13

  • 1Li Z Y, Zhou Y L, Cheng C, et al. Short term photovoltaic power generation forecasting using RBF neural network[C]//26th Chinese Control and Decision Conference. Changsha, China: IEEE Control Systems Society, 2014: 2758-2763.
  • 2张艳霞,赵杰.基于反馈型神经网络的光伏系统发电功率预测[J].电力系统保护与控制,2011,39(15):96-101. 被引量:79
  • 3李鹏梅,臧传治,王侃侃.基于相似日和神经网络的光伏发电预测[J].可再生能源,2013,31(10):1-4. 被引量:32
  • 4丁明,徐宁舟.基于马尔可夫链的光伏发电系统输出功率短期预测方法[J].电网技术,2011,35(1):152-157. 被引量:165
  • 5Kaplanis S, Kaplani E. A model to predict expected mean and stochastic hourly global solar radiation I(h; n(j)) values[J]. Renewable Energy, 2007, 32(8): 1414-1425.
  • 6Lorenz E, Hurka J, Heinemann D, et al. Irradiance forecasting for the power prediction of grid-connected photovoltaic systems[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(1): 2-10.
  • 7Li Y T, Su Y, Shu L J. An ARMAX model for forecasting the power output of a grid connected photovoltaic system[J]. Renewable Energy, 2014(66): 78-89.
  • 8Yazdanbaksh O, Krahn A, Dick S. Predicting solar power output using complex fuzzy logie[C]//Joint IFSA World Congress and NAFIPS Annual Meeting. Edmonton: IFSA World Congress and NAFIPS AnnualMeeting, 2013: 1243-1248.
  • 9中国气象局.GB/T22164-2008公共气象服务一天气图形符号[S].北京:中国标准出版社,2008.
  • 10虞和济.基于神经网络的智能诊断[M].北京:冶金工业出版社,2002..

二级参考文献67

共引文献490

同被引文献429

引证文献41

二级引证文献573

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部