期刊文献+

植物生长的形态与生理并行仿真模型 被引量:3

Parallel Simulation Model for Plant Growth by Integrating Morphology and Physiology
下载PDF
导出
摘要 基于L-系统,构建植物形态结构与生理并行仿真模型。模型以L-系统字符重写迭代机制为基础。定义规则字符F所代表的枝条节间为基本生长单元对象,将植物体抽象映射为基本生长单元链表集合。链表中F字符寻找其直接前继字符进行生长状态标定,使抽象链表成为植物生长状态链。在植物生长周期内,将生物量生成分配模型同L-系统生长的拓扑模型耦合,实现植物生长的结构—功能模型互反馈仿真。以幼龄杉木植株为实验对象,在VC++编程平台下进行结构-功能模型耦合程序实现,在Open GL图形渲染环境中完成结果可视化。提出的模型对于忠实于植物基本生理活动规律的植物形态仿真具有一定的刻画能力。 The Parallel simulation of plant functional and structure model helps to reveal the law of plant growth and provide the basis for validating the model and optimal control in the agricultural and forest product process. This paper presents a plant function - structure model based on L - system. A virtual plant model is abstracted as a collec- tion of units based on the definition of the basic growth unit. The state of virtual plant basic unit is calibrated through the finding of front symbol F. The highlight work of this paper is that the plant funetion model is faithful to the plant physiology based on the improvement of L - system rule. The future work is to improve the biomass allocation model based on a lot of actual measured data of the experiment. The Function - Structure model is programmed at the Visual Studio and the result is visualized by the OpenGL. The young Cunningham ia lanceolata structure of plant model is as experiment object. The visual plant simulation is lack of sink strength and leaf density on the every growth cycle, the result has no rigorous test and verification.
出处 《计算机仿真》 CSCD 北大核心 2015年第8期404-408,共5页 Computer Simulation
基金 中科院"西部之光"联合学者([2011]NO.180)
关键词 虚拟植物 生长状态链 并行仿真 功能-结构模型 Virtual plant Growth status list Parallel simulation Function - structure model
  • 相关文献

参考文献13

二级参考文献178

  • 1张光卫,康建初,李鹤松,刘常昱,李德毅.面向场景的协同过滤推荐算法[J].系统仿真学报,2006,18(z2):595-601. 被引量:27
  • 2李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 3王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 4陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 5Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 7Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 8Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 9Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 10Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html

共引文献1085

同被引文献29

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部