期刊文献+

求解多目标优化问题的改进布谷鸟搜索算法 被引量:13

Improved cuckoo search algorithm for multi-objective optimization problems
下载PDF
导出
摘要 针对求解多目标优化问题,提出一种改进的多目标布谷鸟搜索算法(IMOCS).相比于标准多目标布谷鸟搜索算法(MOCS),IMOCS在莱维飞行中使用动态自适应的步长控制量,并基于层级和拥挤度距离选择下一次莱维飞行的种群.为了验证算法的有效性,通过在测试实例(SCH,ZDT系列,LZ)计算所求Pareto前沿与真实Pareto前沿的广义距离和所求Pareto前沿的多样性来测试IMOCS的性能.结果表明,与MOCS,NSPSO,NSGA-II比较,IMOCS所求的广义距离更小,即由IMOCS所求Pareto前沿更加接近于真实Pareto前沿,同时IMOCS的Pareto前沿分布更加广泛和均匀,即多样性更好. In trying to solve multi-objective optimization problems,an improved multi-objective cuckoo search algorithm(IMOCS)was introduced.Compared with the standard multi-objective cuckoo search algorithm(MOCS),the IMOCS had two improvements,used a dynamic adaptive step-size control amount in Lévy flight;chose the next Lévy flight population based on the level and crowding distance.To verify the effectiveness of the IMOCS,test instances(SCH,ZDT series,LZ)were used to evaluate the performance:the generalized distance between the obtained Pareto front and the true Pareto front,and the diversity of the obtained Pareto front.Our results and comparison with the MOCS,NSPSO and NSGA-II showed that the IMOCS obtains a smaller generalized distance,which meant the IMOCSs Pareto front is closer to the true Pareto front,and at the same time its Pareto front distributes broader and more uniform,that diversity is better.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第8期1600-1608,共9页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(21365008 61105004) 广西自然科学基金资助项目(2012GXNSFAA053230 2013GXNSFBA019279) 广西信息科学实验中心重点资助项目(20130103)
关键词 多目标优化 布谷鸟搜索算法 自适应步长控制量 非支配集排序 multi-objective optimization cuckoo search algorithm dynamic adaptive step-size control amount non-dominated set sorting
  • 相关文献

参考文献3

二级参考文献49

  • 1Kennedy J, Eberhart RC. Particle swarm optimization. In: Proc. of the IEEE Int’l Conf. on Neural Networks. Piscataway: IEEE Inc., 1995. 1942-1948. [doi: 10.1109/ICNN. 1995.488968].
  • 2Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proc. of the 6th Int’l Symp. on Micro Machine and Human Science. Piscataway: IEEE Inc., 1995. 39-43. [doi: 10.1109/MHS.1995.494215].
  • 3Dorigo M, Maniezzo V, Colomi A. The ant system: Optimization by a colony of cooperating agents. IEEE Trans, on Systems, Man, and Cybernetics, Part B, 1996,26(1):29-41. [doi: 10.1109/3477.484436].
  • 4Clerc M. Particle Swarm Optimization. Landon: Wiley-ISTE, 2006.
  • 5Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report, TR-06, Computer Engineering Department, Engineering Faculty, Erciyes University, 2005.
  • 6Chen H, Cui DW, Cui YA, Tao YQ, Liang K. Ethnic group evolution algorithm. Ruan Jian Xue Bao/Joumal of Software, 2010, 21(5):978-990 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/3484.htm [doi: 10.3724/SP.J.1001.2010. 03484].
  • 7Yang XS, Deb S. Cuckoo search via Levy flights. In: Abraham A, Carvalho A, Herrera F, et al., eds. Proc. of the World Congress on Nature and Biologically Inspired Computing (NaBIC 2009). Piscataway: IEEE Publications, 2009. 210-214. [doi: 10.1109/ NABIC.2009.5393690].
  • 8Yang XS, Deb S. Engineering optimisation by cuckoo search. Int’l Journal of Mathematical Modeling and Numerical Optimisation, 2010,l(4):330-343. [doi: 10.1504/IJMMN0.2010.03543].
  • 9Yang XS, Deb S. Multi-Objective cuckoo search for design optimization. Computers & Operations Research, 2013,40(6): 1616-1624. [doi: 10.1016/j.cor.2011.09.026].
  • 10Civicioglu P, Besdok E. A conceptual comparison of the cuckoo search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 2013,39(4):315-346. [doi: 10.1007/s 10462-011-9276-0].

共引文献149

同被引文献100

引证文献13

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部