期刊文献+

嗜热四膜虫可变剪接基因鉴定及功能分析 被引量:1

Identification and Functional Analysis of the Alternative Splicing Genes in Tetrahymena thermophila
原文传递
导出
摘要 可变剪接是产生蛋白质组多样性和调节基因表达的重要机制,相关研究在高等真核生物中开展较多,而在单细胞真核生物中则较少,尤其是单细胞原生动物纤毛虫中,仅有少量报道。本文基于单细胞模式原生动物嗜热四膜虫种大量转录组数据,对其可变剪接基因进行了鉴定及分析。在嗜热四膜虫中共鉴定到2 894个可变剪接位点,涉及到2 698个可变剪接基因,可分为四类。考虑到转录本拼接的准确性,选择了其中464个与基因组预测模型完全一致的可变剪接基因进行深入分析,其中生长(growth)时期、饥饿(starvation)时期、接合生殖(conjugation)时期特异性的可变剪接基因分别为49个、79个和135个。对可变剪接基因的功能进行分析表明其涉及的功能广泛且显著富集于蛋白激酶过程,提示可变剪接基因在嗜热四膜虫蛋白磷酸化和信号传导中具有重要作用。 Alternative splicing(AS) is the important way to generate the protein diversity and post-translational gene expression regulation.Currently,AS studies mainly focused on the high eukaryotes,few studies have been found in the single-celled eukaryotes,especially in the ciliated protozoans.This study analyzed the AS genes in model organism Tetrahymena thermophila based on the next generation transcriptome sequencing(RNA-Seq) data.A total of 2894 splicing sites were identified in T.thermophila,represented 2 698 AS genes in four different types.Taking into account the accuracy of the transcripts/gene models,464 highly confident genes were used to further analysis.In these genes,there are 49,79 and 135 stages specific AS genes in growth,starvation and conjugation,respectively.Functional analysis showed that the AS genes involved in a wide range of biological processes,and significantly enriched in the protein kinase,which suggested that AS play an important role in the protein phosphorylation and cell signaling transduction in T.thermophila.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2015年第1期17-27,共11页 Genomics and Applied Biology
基金 国家自然科学基金项目(31301930 31372168)资助
关键词 嗜热四膜虫 转录组 可变剪接 鉴定 功能分析 Tetrahymena thermophila Transcriptome Alternative splicing(AS) Identification Functional analysis
  • 相关文献

参考文献38

  • 1Blencowe B.J., 2006, Alternative splicing: new insights fromglobal analyses, Cell, 126(1): 37-47.
  • 2Boudsocq M., Droillard M.J., Regad L., and Lauribre C., 2012, Characterization of Arabidopsis calcium-dependent protein kinases: activated or not by calcium? Biochem. J., 447 (2): 291-299.
  • 3Chang Y.F., Imam J.S., and Wilkinson M.F., 2007, The non- sense-mediated decay RNA surveillance pathway, Annu. Rev. Biochem., 76:51-74.
  • 4Filichkin S.A., Priest H.D., Givan S.A., Shen R., Bryant D.W., Fox S.E., Wong W.K., and Moclder T.C., 2010, Genome-wide mapping of alternative splicing in Arabidopsis thaliana, Genome Res., 20(1): 45-58.
  • 5Finn R.D., Tate J., Mistry J., Coggill P.C., Sammut S.J., Hotz H. R., Ceric G., Forslund K., Eddy S.R., Sonnhammer E.L., and Baternan A., 2008, The Pfam protein families database, Nucleic Acids Res., 36(Database issue): D281-D288.
  • 6Fryer L.G., and Carling D., 2005, Amp-activated protein kinase and the metabolic syndrome, Biochem. Soc. Trans., 33(Pt 2): 362-366.
  • 7Glickman M.H., and Ciechanover A., 2002, The ubiquitin-pro- teasome proteolytic pathway: destruction for the sake of construction, Physiol. Rev., 82(2): 373-428.
  • 8Greider C.W., and Blackburn E.H., 1985, Identification of a spe- cific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43(2 Pt 1): 405-413.
  • 9Hanna R.A., Campbell R.L., and Davies P.L., 2008, Calci- um-bound structure of calpain and its mechanism of inhibi- tion by calpastatin, Nature, 456(7220): 409-412.
  • 10Hershko A., 2005, The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle, Cell Death Differ., 12(9): 1191-1197.

同被引文献10

  • 1Blencowe B.J., 2006, Alternative splicing: new insights fi'om global analyses, Cell, 126(1): 37-47.
  • 2Grahn T.H., Zbang Y., Lee M.J., Sommer A.G., Mostoslavsky G., Fried S.K., Greenberg A.S., and Puff V., 2013, FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes, Biochem. Biophys Res. Com- mun., 432(2): 296-301.
  • 3Li H., Chen A., Shu L., Yu X., Gan L., Zhou L., and Yang Z., 2014, Translocation of CIDEC in hepatocytes depends on fatty acids, Genes to Cells, 19(11): 793-802.
  • 4Li H., Song Y., Li F., Zhang L., Gu Y., Zhang L., and Jiang L., 2010, Identification of lipid droplet-associated proteins in the formation of macrophage-derived foam cells using mi- croarrays, Int. J. Mol. Med., 26(2): 231-239.
  • 5Liang L., Zhao M., Xu Z., and Li T., 2003, Molecular cloning and characterization of CIDE-3, a novel member of the cell- death-inducing DNA-fragrnentation-factor (DFF45)-like ef- fector family, Biochem. J., 370(Pt 1): 195-203.
  • 6Mortazavi A., Williams B.A., McCue K., Schaeffer L., and Wold B., 2008, Mapping and quantifying mammalian transcripto- mes by RNA-Seq, Nat. Methods, 5(7): 621-628.
  • 7Nian Z., Sun Z., Yu L., Toh S.Y., Sang J., and Li P., 2010, Fat- specific protein 27 undergoes ubiquitin-dependent degrada- tion regulated by triacylglycerol synthesis and lipid droplet formation, 285(13): 9604-9615.
  • 8Nishino N., Tamori Y., Tateya S., Kawaguchi T., Shibakusa T., Mizunoya W., Inoue K., Kitazawa R., Kitazawa S., Matsuki Y., Hiramatsu R., Masubuchi S., Omachi A,, Kimura K., Saito M., Amo T., Ohta S., Yamaguchi T., Osumi T., Cheng J., Fujimoto T., Nakao H., Nakao K., Aiba A., Okamura H., Fushiki T., and Kasuga M., 2008, FSP27 contributes to effi. cient energy storage in murine white adipocytes by promot-ing the formation ofunilocular lipid droplets, J. Clin. Invest., 118(8): 2808-2821.
  • 9Purl V., Konda S., Ranjit S., Aouadi M., Chawla A., Chouinard M., Chakladar A., and Czech M.P., 200"7, Fat-specific pro- tein 27, a novel lipid droplet protein that enhances triglyc-eride storage, J. Biol. Chem., 282(47): 34213-34218.
  • 10Xu X., Park J.G., So J.S., and Lee A.H., 2015, Transcriptional ac- tivation of Fsp27 by the liver-enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis, Hepatology, 61(3): 857-869.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部