期刊文献+

大数据时代高校贫困生评定管理方法初探 被引量:9

下载PDF
导出
摘要 目前,贫困生资格评定管理问题日益突出,大数据技术为解决这一难题提供了契机,本文通过构建完整的学生及家庭状况数据库、统计学生个人消费情况、制定贫困生评定管理规则、引入贫困生资助监管机制等措施,探索新的工作方法,促进教育的公平、公正和资助资源的合理分配。 At present, the poor college students evaluation and management problem increasingly prominent, big data technology provided an opportunity to solve this problem, in this paper, the author explore new methods of work by building complete student and family condition database, calculating students personal consumption condition, making evaluation management rules, introducting poor students fund supervision mechanism and other measures to pro-moting education fairness, impartiality and rational distribution of fund resources.
作者 王红 骆剑峰
出处 《高教学刊》 2015年第19期130-131,共2页 Journal of Higher Education
关键词 大数据 高校贫困生 评定管理 big data poor college students evaluation and management
  • 相关文献

参考文献4

二级参考文献17

  • 1王琰春,张胜军,赵菊梅.高校教师教学质量评价存在的问题及对策[J].理工高教研究,2006,25(1):66-67. 被引量:36
  • 2V Vapnik and O Chapelle.Bounds on error expectation for support vector machines[M].Neural Comput,2000(12),9:2013-2036.
  • 3R Stoean,M Preuss,C Stoean,E El-Darzi,and D Dumitrescu.An evolutionary approximation for the coefficients of decision functions within a support vector machine learning strategy[M].Foundations of Computational,Intelligence.2009(1):83-114.
  • 4X Zhou,Y Xiong,WP Xiong,and LZ Xiong.Appliedinformation technology in fusion SVM partial least squares analysis of experimental data in the body of PET[C].Advanced Materials Research,2014(951):185-188.
  • 5CW Hsu,CC Chang,and CJ Lin.A practical guide to support vector classification[M].Department of Computer Science.National Taiwan University,2003.
  • 6B Waske,S Linden,JA Benediktsson,A Rabe,and P Hostert.Sensitivity of support vector machines to random feature selection in classification of hyperspectral data[J].Geosci.Remote Sens.2010(48),7:2880-2889.
  • 7B Scholkopf and AJ Smola.Learning with kernels:Support vector machines,regularization,optimization,and beyond[M].MIT press,2002.
  • 8G Wanigasekara and T Fujimoto.Exposition of KarushKuhn-Tucker Theorem[C].Annual Research Symposium,2014.
  • 9LS Lasdon.Optimization theory for large systems[M].Courier Corporation,2013.
  • 10ML Huang,YH Hung,WM Lee,RK Li,and BR Jiang.SVM-RFE based feature selection and taguchi parameters optimization for multiclass SVM classifier[J].Scientific World,2014.

共引文献67

同被引文献50

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部