期刊文献+

Separation of Silver Nanocrystals for Surface-enhanced Raman Scattering Using Density Gradient Centrifugation

Separation of Silver Nanocrystals for Surface-enhanced Raman Scattering Using Density Gradient Centrifugation
原文传递
导出
摘要 One-dimensional silver nanocrystals (AgNCs) have been prepared by a polyol process using sodium hydroxide and nitric acid at a constant silver source concentration. Results indicate that the acidity- basicity plays an important role in silver-nanocrystal formation. Different morphologies of AgNCs were synthesized by changing the NaOH or HNO3 amount. We demonstrate that nearly monodisperse silver nanocrystals can be separated from polydisperse samples using density gradient centrifugation separation (DGCS). We also demonstrate that the separated AgNCs can be used as substrates for surface- enhanced Raman scattering (SERS) spectroscopy. The separation approach provides a method of improving the nanocrystal quality produced by large-scale synthetic methods. One-dimensional silver nanocrystals (AgNCs) have been prepared by a polyol process using sodium hydroxide and nitric acid at a constant silver source concentration. Results indicate that the acidity- basicity plays an important role in silver-nanocrystal formation. Different morphologies of AgNCs were synthesized by changing the NaOH or HNO3 amount. We demonstrate that nearly monodisperse silver nanocrystals can be separated from polydisperse samples using density gradient centrifugation separation (DGCS). We also demonstrate that the separated AgNCs can be used as substrates for surface- enhanced Raman scattering (SERS) spectroscopy. The separation approach provides a method of improving the nanocrystal quality produced by large-scale synthetic methods.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第8期834-839,共6页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.21205127,21203226 and 21377063)
关键词 SILVER Raman scattering NANOMATERIALS Separation efficiency Silver Raman scattering Nanomaterials Separation efficiency
  • 相关文献

参考文献20

  • 1B.Y. Ahn, E.B. Duoss, M.J. Motala, X. Guo, S.L Park, Y. Xiong, J. Yoon, R.G. Nuzzo, J~. Rogers, J.A. Lewis, Science 323 (2009) 1590-1593.
  • 2R.J. Veenkamp, W.N. Ye, J. Appl. Phys. 115 (2014) 124317.
  • 3L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, ACS Nano 4 (2010) 2055-2963.
  • 4Q. Xu, W. Shen, Q. Huang, Y. Yang, R. Tan, K. Zhu, N. Dai, W. Song, J. Mater. Chem. C 2 (2014) 3750-3755.
  • 5C.H. Moran, M. Rycenga, X. Xia, C.M. Cobley, Y. Xia, Nanotechnology 25 (2014) 014007.
  • 6M. Tsuji, K. Matsumoto, N. Miyamae, T. Tsuji, X. Zhang, Cryst. Growth Des. 7 (2007) 311-320.
  • 7H. Mao, J. Feng, X. Ma, C. Wu, X. Zhao, J. Nanopart. Res. 14 (2012) 1-15.
  • 8M.R. Hormozi-Nezhad, M. Jalali-Heravi, H. Robarjazi, H. Ebrahimi-Najafabadi, Colloids Surf, A 393 (2012) 46-52,.
  • 9M. Hu, J. Gao, Y. Dong, S. Yang, R.K,Y. Li, RSC Adv. 2 (2012) 2055-2060.
  • 10G.H. Lim, S.J, Lee, l. Han, S. Bok, J.H. Lee, J. Nam, J.H. Cho, B. Lim, Chem. Phys. Lett. 602 (2014) 10-15.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部