期刊文献+

采用改进尺度不变特征变换在多变背景下实现快速目标识别 被引量:28

Fast object recognition under multiple varying background using improved SIFT method
下载PDF
导出
摘要 提出一种改进的尺度不变特征变换(SIFT)算法,用于实现多变背景下的快速目标识别。首先,构建目标图像尺度空间,提取SIFT特征点并将其按大小分类,目标识别时只需比较同一类型的特征点。然后,由SIFT特征点子区域方向直方图计算得到4个新角度用于代表特征点的方向信息,并且在目标识别时根据角度信息限制特征点匹配范围,从而提高SIFT算法的运算速度。最后,计算目标图像和待识别图像之间的尺度因子,在尺度因子约束条件下进行目标特征点匹配,从而有效地保证正确匹配数量,提高目标识别的鲁棒性。实验结果表明:当目标在待识别图像中发生局部遮挡、旋转、尺度变化或者弱光照等情况下,改进的SIFT算法能够完成多变背景下快速目标识别任务,平均识别速度提升了40%。 An improved Scale Invariant Feature Transform(SIFT)method was proposed to implement the fast object recognition under a multiple varying background.Firstly,the scale space of object image was established,SIFT feature points were extracted and classified by their sizes.Only by comparing the same kinds of feature points,the target recognition could be completed.Then,four new angles were computed from the sub-region orientation histogram to represent the orientation information of each SIFT feature.Meanwhile,the feature point matching range was limited according to angle information in the target recognition to improve the calculation speeds of the SIFT algorithm.Finally,the scale factor between object image and target image was calculated and the object feature points were matched under the constraint by the scale factor to increase the number of correct matches and to insure the robustness of object recognition.Object recognition experiments were operated under objectexternal occlusions,object rotation,scale change and illumination conditions.Results show that improved SIFT method has better performance of object recognition,and its computation speed has raised more than 40% as comparing with that of original SIFT algorithm.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第8期2349-2356,共8页 Optics and Precision Engineering
基金 中国科学院长春光学精密机械与物理研究所创新基金资助项目(No.Y2CX1SS125)
关键词 目标识别 尺度不变特征变换 特征匹配 多变背景 object recognition Scale Invariant Feature Transform(SIFT) feature matching multiple varying background
  • 相关文献

参考文献16

  • 1LOW[D. Distinctive image features from scale-in- variant keypoints, cascade filtering approach [J]. International Journal of Computer Vision 2004, 60(2) : 91-110.
  • 2YANG J C, YU K, GONG Y H, etal. Linear spatial pyramid matching using sparse coding for image classification EC]. IEEE Conference on Com- puter Vision and Pattern Recognition, 2009, 1794- 1801.
  • 3ROSTEN E, PORTER R, DRUMMOND T. Fas ter and better: a machine learning approach to cor ner detection [J]. IEEE Transaction on Pattern A nalysis and Machine Intelligence, 2010, 32 (1) 105-119.
  • 4贾平,徐宁,张叶.基于局部特征提取的目标自动识别[J].光学精密工程,2013,21(7):1898-1905. 被引量:42
  • 5赵立荣,朱玮,曹永刚,柳玉晗,孙俊喜.改进的加速鲁棒特征算法在特征匹配中的应用[J].光学精密工程,2013,21(12):3263-3271. 被引量:24
  • 6KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptor C]. Proceedings of IEEE International Confer- ence on Computer Vision and Pattern Recognition, 2004,2:506-513.
  • 7纪华,吴元昊,孙宏海,王延杰.结合全局信息的SIFT特征匹配算法[J].光学精密工程,2009,17(2):439-444. 被引量:70
  • 8CHARIOT A, KERIVEN R. GPU-boosted online image matching [C]. in Proceeding of the 19th Conference on Pattern Recognition, 2008, 1-4.
  • 9SILPA-ANAN C, HARTLEY R. Optimised KD- trees for fast image descriptor matching [C]. in Proc. IEEE International Conference on Computer Vision and Pattern Recognition, 2008, 1-8.
  • 10FARAJ A, DANIJELA R D, AXEL G. Speeded up image matching using split and extended SIFT features -C2. Proceedings of the 5th Internation- al Conference on Computer Vision Theory and Applications (VISAPP 2010), 2010, 287-295.

二级参考文献26

  • 1丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 2王国美,陈孝威.SIFT特征匹配算法研究[J].盐城工学院学报(自然科学版),2007,20(2):1-5. 被引量:24
  • 3LOWE D.Object recognition from local scale-invariant features[C].Proc.of the International Conference on Computer Vision (ICCV),Corfu,Greece,1999,1150-1157.
  • 4CSURKA G,DANCE C R,FAN L X,et al..Visual categorization with bags of keypoints[C].In Workshop on Statistical Learning in Computer Vision,ECCV,2004,1-22.
  • 5AGARWAL S,SNAVELY N,SIMON I,et al..Building Rome in a Day[C].Internation Conference on Computer Vison,2009.
  • 6TOLA E,LEPETIT V,DAISY P.An efficient dense descriptor applied to wide-baseline stereo] [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32 (5):815-830.
  • 7FERGUS R,PERONA P,ZISSERMAN A.Object class recognition by unsupervised scale-invariant learning[C].2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003,2:264-271.
  • 8RUBLEE E,RABAUD V,KONOLIGE K,et al..ORB:an efficient alternative to SIFT or SURF[C].2011 IEEE International Conference on Computer Vison (ICCV),2011,2564-2571.
  • 9WERNER K,MARTIN K.Interest point based tracking[C].20th International Conference on Pattern Recognition (ICPR),2010:3549-3552.
  • 10HE W,YAMASHITA T,LU H T,et al..SURF Tracking[C].2009 IEEE 12th International Conference on Computer Vision,Kyoto,Japan,September,2009:1586-1592.

共引文献125

同被引文献253

引证文献28

二级引证文献252

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部