期刊文献+

改进的自适应冲击滤波图像超分辨率插值算法 被引量:13

Interpolation Algorithm Based on Improved Adaptive Shock Filter in Image Super-Rresolution
下载PDF
导出
摘要 针对基于插值的图像超分辨算法造成图像边缘扩散和引入噪声的缺点,该文提出一种改进的自适应冲击滤波模型的图像超分辨率插值方法.根据插值后的初始高分辨率图像梯度自适应调整冲击滤波的权重,针对不同的图像边缘相应地减少图像的边缘扩散,同时利用前向扩散消除噪声.相对传统冲击滤波方法,避免了锯齿、块效应等人工痕迹,有效的保留了细节纹理特征.理论分析和实验结果表明,文中方法获得更好的超分辨率结果,主观效果得到明显改善,客观指标得到一定提高. In view of the disadvantages such as edge diffusion and introducing noise in image super-resolution based on interpolation algorithm,an interpolation method based on improved adaptive shock filter is proposed in this paper.The weighting of shock filter can be adjusted according to the gradient of initial high-resolution image.Edge diffusion is reduced for different image edges.The noise is removed by forward diffusion.The proposed model preserves texture features efficiently and overcomes the artifact such as jaggies and blocking effects compared with traditional shock filter.Theoretical analysis and experiments demonstrate that the method proposed in the paper has a better visual result.The subjective quality is improved obviously,and the objective indicators are improved partly.
出处 《计算机学报》 EI CSCD 北大核心 2015年第6期1131-1139,共9页 Chinese Journal of Computers
基金 国家自然科学基金(61471272 91120002)资助~~
关键词 图像超分辨率 图像插值 偏微分方程 冲击滤波 image super-resolution image interpolation partial differential equation shock filter
  • 相关文献

参考文献20

  • 1Van Ouwerkerk J D. Image super-resolution survey. Image and Vision Computing, 2006, 24(10) : 1039-1052.
  • 2苏衡,周杰,张志浩.超分辨率图像重建方法综述[J].自动化学报,2013,39(8):1202-1213. 被引量:196
  • 3Yang J, Wright J, Huang T S, et al. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11).. 2861-2873.
  • 4Irani M, Peleg S. Motion analysis for image enhancement: Resolution, occlusion, and transparency. Journal of Visual Communication and Image Representation, 1993, 4(4): 324-335.
  • 5Sun J, Xu Z, Shum H Y. Image super-resolution using gradient profile prior//Proceedings of the Computer Vision and Pattern Recognition(CVPR). San Francisco, USA, 2008: 1-8.
  • 6Li X, Orchard M T. New edge-directed interpolation. IEEE Transactions on Image Processing, 2001, 10(10) : 1521-1527.
  • 7Fattal R. Image upsampling via imposed edge statistics. ACM Transactions on Graphics, 2007, 26(3) .. 95.
  • 8Pascal G. Contour stencils Total variation along curves /or adaptive image interpolation. SIAM ]ourna on Imaging Sciences, 2011,4(3) .. 954-979.
  • 9Battiato S, Gallo G, Stanco F. Smart interpolation by anisotropic diffusion//Proceedings of the 12th International Conference on Image Analysis and Processing. Mantova, Italy, 2003:572-577.
  • 10Zhou Q, Chen S F, Liu J, et al. Edge-preserving single image superresolution//Proceedings of the 19th ACM International Conference on Multimedia. Arizona, USA, 2011 : 1037-1040.

二级参考文献22

  • 1Gonzalez R C, Woods R E. Digital Image Processing. 2nd Edition. Beijing: Publishing House of Electronics Industry, 2004
  • 2Chen Wu-Fan et al. Wavelet Analysis and Its Applications in Image Processing. Beijing: Science Press, 2002(in Chinese)
  • 3Aubert G, Kornprobst P. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Volume 147, of Applied Mathematical Sciences. Springer-Verlag, 2001
  • 4Nitzberg M, Shiota T. Nonlinear image filtering with edge and corner enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(8) : 826-833
  • 5Biswas S, Pal N R, Pal S K. Smoothing of digital images using the concept of diffusion process. Pattern Recognition, 1996, 29(3): 497-510
  • 6You Y L, Xu W, Tannenbaum A, Kaveh M. Behavioral analysis of anisotropic diffusion in image processing. IEEE Transactions on Image Processing, 1996, 5(11) : 1539-1553
  • 7Haralick R M. Digital step edges from zero crossing of sec ond directional derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(1) : 58-68
  • 8Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639
  • 9Osher S J, Rudin L I. Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis, 1990, 27(4): 919-940
  • 10Alvarez L, Mazorra L. Signal and image restoration usingshock filters and anisotropic diffusion. SIAM Journal on Numerical Analysis, 1994, 31(2) : 590 605

共引文献239

同被引文献77

  • 1王欢,吴成东,迟剑宁,于晓升,胡倩.联合多任务学习的人脸超分辨率重建[J].中国图象图形学报,2020,25(2):229-240. 被引量:6
  • 2郎文辉,江朝晖,周荷琴,冯焕清.区域指导的彩色图像插值[J].电子学报,2006,34(1):35-39. 被引量:1
  • 3Nasrollahi K, Moeslund T B. Super-resolution:a comprehensive survey. Machine Vision and Applications, 2014, 25(6):1423-1468.
  • 4Balure C S, Kini M R. A survey-super resolution techniques for multiple, single, and stereo images. In:Proceedings the 5th International Symposium on Electronic System Design (ISED). Surathkal:IEEE, 2014.215-216.
  • 5Getreuer P. Contour stencils:total variation along curves for adaptive image interpolation. SIAM Journal on Imaging Sciences, 2011, 4(3):954-979.
  • 6Freedman G, Fattal R. Image and video upscaling from local self-examples. ACM Transactions on Graphics, 2011, 30(2):Article No.12.
  • 7Kawano H, Suetake N, Cha B, Aso T. Sharpness preserving image enlargement by using self-decomposed codebook and Mahalanobis distance. Image and Vision Computing, 2009, 27(6):684-693.
  • 8Zhang Y Q, Liu J Y, Yang W H, Guo Z M. Image super-resolution based on structure-modulated sparse representation. IEEE Transactions on Image Processing, 2015, 24(9):2797-2810.
  • 9Zhang Y Q, Xiao J S, Li S H, Shi C Y, Xie G X. Learning block-structured incoherent dictionaries for sparse representation. Science China Information Sciences, 2015, 58(10):1-15.
  • 10Yang C Y, Huang J B, Yang M H. Exploiting self-similarities for single frame super-resolution. In:Proceedings of the 10th Asian Conference on Computer Vision (ACCV). Queenstown, New Zealand:Springer, 2011.497-510.

引证文献13

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部