期刊文献+

耦合几何特征的高精度流体动画建模方法 被引量:5

Toward Accurate Fluid Animation with Geometry-Coupled Method
下载PDF
导出
摘要 动漫制作中涉及到大量的流体动画特效,视觉逼真性是它们的基本追求.然而,传统的物理模型计算代价高、效率低且流体细节易丢失.针对这些问题,文中提出一种耦合几何特征的高精度流体动画生成方法,通过利用不同流体细节(如水面和水花)之间的相关性提高计算效率和计算精度.该方法首先建立几何模型,对流体表面易于产生流体细节的区域即细节敏感区域进行定位、量化和跟踪.然后将几何模型与高精度流体动画物理模型相耦合,通过将几何模型中的定位量化函数映射为粒子密度函数,以此调整物理模型中的粒子集,从而更有效地产生高精度的流体水面和水花等细节效果.实验结果表明,文中方法能够提高流体动画计算的效率和精度,高效地生成更具有视觉真实感的流体动画. Special effects of fluid phenomenon are widely used in animation production.Generating fluid with high degree of realism is the fundamental goal in these applications.However,the traditional physically-based methods are expensive,inefficiency and prone to losing details.To address these problems,we presented a geometry-coupled method to produce highly accurate fluid animation.In this method,we explored the close relationship between different fluid details such as liquid surface and sprays splashes to improve the efficiency and accuracy of fluid animation.To this end,we first built a geometric model to locate,quantify and track the regions prone to losing details.Second,we coupled the geometric model with the physical model.It is performed by mapping the location and quantization function in the geometric model to the sample density of particles.Finally,we used the sample density to adjust the particle set which can generate highly accurate fluid surface and water sprays.Experimental results show that our approach improves the efficiency and accuracy of fluid animation.It can also produce visual pleasing fluid animation results effectively.
出处 《计算机学报》 EI CSCD 北大核心 2015年第6期1281-1295,共15页 Chinese Journal of Computers
基金 国家自然科学基金(61202225 61303157 61379085 61173067 61472232) 山东省高等学校科技计划项目(J13LN13)资助~~
关键词 几何特征 高精度流体动画 粒子分布 粒子水平集 光滑粒子流体动力学 纳维-斯托克斯方程 geometry features highly accurate fluid animation particles distribution partical level set smooth particle hydrodynamics Navier-Stokes equation
  • 相关文献

参考文献41

  • 1Enright D, Marschner S, Fedkiw R. Animation and rendering of complex water surfaces. ACM Transactions on Graphics, 2002 21(3) 736-744.
  • 2Kim ], Cha D, Chang B, et al. Practical animation of turbulent splashing water//Proceedings of the 2006 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation (SCA 2006). Vienna, Austria, 2006:335-344.
  • 3Wojtan C, Thtirey N, Gross M, et al. Physics-inspired topology changes for thin fluid features. ACM Transactions on Graphics, 2010, 29(4): 50.
  • 4Losasso F, Talton J O, Kwatra N, et al. Two-way coupled SPH and particle level set fluid simulation. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(4): 797- 804.
  • 5Gerszewski D, Bargteil A W. Physics-based animation of large-scale splashing liquids. ACM Transactions on Graphics, 2013, 32(6): 185.
  • 6Patkar S, Aanjaneya M, Karpman D, et al. A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics//Proceedings of the 2013 ACM SIGGRAPH/Euro- graphics Symposium on Computer Animation (SCA 2013). Anaheim, USA, 2013:I05-I14.
  • 7Chentanez N, Mtiller M. Real-time Eulerian water simulation using a restricted tall cell grid. ACM Transactions on Graphics, 2011, 30(4); 82.
  • 8Solenthaler B, Gross M. Two-scale particle simulation. ACM Transactions on Graphics, 2011, 30(4): 81.
  • 9Nguyen H. GPU Gems 3. Boston: Addison-Wesley Profes- sional, 2007.
  • 10I.agse A, Lefebvre S, Cook R, et al. A survey of procedural noise functions. Computer Graphics Forum, 2010, 29 (8) 2579-260O.

二级参考文献103

共引文献16

同被引文献21

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部