期刊文献+

粗糙模糊集的近似表示 被引量:29

The Approximate Representation of Rough-fuzzy Sets
下载PDF
导出
摘要 粗糙模糊集是利用粗糙集的Pawlak知识空间来近似刻画一个模糊集(不确定概念)的理论模型.粗糙模糊集用上、下近似模糊集作为目标概念的边界模糊集,它没有给出在当前知识基下如何得到目标模糊概念的近似模糊集或近似精确集的方法.文中首先给出模糊集的相似度(近似度)的概念,定义了Pawlak知识空间U/R下的阶梯模糊集、均值模糊集、0.5-精确集等概念;然后分析得出U/R知识空间下的均值模糊集是所有阶梯模糊集中与目标模糊集最接近的模糊集,U/R知识空间下0.5-精确集是目标模糊集最接近的近似精确集;分析了均值模糊集、0.5-精确集分别与目标模糊集之间的相似度随知识粒度变化的变化规律.从新的视角提出了不确定性目标概念的近似表示和处理的方法,促进了不确定人工智能的发展. Rough-fuzzy set describes a fuzzy set(or an uncertain concept)by Pawlak's knowledge space in the classical rough set model.In rough-fuzzy sets model,upper-approximation fuzzy set and lower-approximation fuzzy set are considered as two boundary fuzzy sets of the target concept,and there are few methods for constructing a fuzzy approximation set or a crisp approximation set of a target fuzzy concept in current knowledge base.In this paper,the concept of similarity is presented first and then the definitions of step-fuzzy set,average-fuzzy set and 0.5-crisp set of a fuzzy set are proposed in the knowledge space U/R.The conclusions that the averagefuzzy set is the best fuzzy approximation set of the target fuzzy set in all step-fuzzy sets and the0.5-crisp set also is the best crisp approximation set of the target fuzzy set in all crisp sets in Pawlak's knowledge space are presented and proved.Moreover,the similarity degree between the average-fuzzy set and the target fuzzy,and the similarity degree between the 0.5-crisp set and the target fuzzy set are discussed respectively and the change rules of these similarity degrees with the changing knowledge granularity are analyzed in detail.This paper proposed a method in a new perspective to represent and process the uncertain target concept,and these results will promote the development of uncertain artificial intelligence.
出处 《计算机学报》 EI CSCD 北大核心 2015年第7期1484-1496,共13页 Chinese Journal of Computers
基金 国家自然科学基金(61472056 61272060 61309014) 重庆市自然科学基金(cstc2012jjA40047) 重庆邮电大学博士启动基金(A2010-06)资助~~
关键词 粗糙集 粒计算 粗糙模糊集 相似度 知识粒度 rough sets granular computing rough-fuzzy sets similarity knowledge granularity
  • 相关文献

参考文献30

  • 1李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:405
  • 2Zadeh L A. Fuzzy sets. Information and Control, 1965, 8(3) : 338-353.
  • 3Pawlak Z. Rough sets. International Journal of Computer and Information Science, 1982, 11(5): 341-356.
  • 4李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1261
  • 5Wang Guo-Yin, Xu Chang-Lin, Zhang Qing-Hua, Wang Xiao- Rong. A multi-step backward cloud generator algorithm// Proceedings of the 8th International Conference on Rough Sets and Current Trends in Computing. Chengdu, China, 2012:313-322.
  • 6Wang Guo-Yin, Xu Chang-Lin. Cloud model--A bidirectional cognition model between concept s extension and intension// Proceedings of the 1st International Conference on Advanced Machine Learning Technologies and Applications. Cairo, Egypt, 2012:391-400.
  • 7王国胤,李德毅,姚一豫等.云模型与粒计算.北京:科学出版社.2012.
  • 8苗夺谦,徐菲菲,姚一豫,魏莱.粒计算的集合论描述[J].计算机学报,2012,35(2):351-363. 被引量:54
  • 9苗夺谦,王珏.粗糙集理论中概念与运算的信息表示[J].软件学报,1999,10(2):113-116. 被引量:250
  • 10Qian Yu-Hua, Liang Ji-Ye, Pedrycz W, Dang Chuang-Yin. Positive approximation z An accelerator for attribute reduction in rough set theory. Artificial Intelligence, 2010, 174(9-10) : 597-618.

二级参考文献172

共引文献2087

同被引文献240

引证文献29

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部