期刊文献+

最大不全k满足问题的局部搜索近似算法

The Local Search Approximation Algorithms for Maximum Not-All-Equal k-Satisfiability Problems
下载PDF
导出
摘要 合取范式可满足与最大可满足问题是理论计算机科学的核心问题.最大不全满足问题是最大可满足问题的一般化.限制每个子句均含有k(≥2)个字母的最大不全满足问题又称为最大不全k满足问题.最大不全满足问题的算法进展,以解答该类问题的半定规划松弛法最具代表性.关于最大不全2满足、3满足和4满足问题,目前性能最好的近似算法分别由Goemans与Williamson、Zwick、Karloff与Zwick给出,近似性能比分别为1.139(1/0.878)、1.10047(1/0.9087)和8/7.当k≥5时,最大不全k满足问题的近似算法则未曾见到.文中给出了一个解答最大不全k满足问题的局部搜索算法,近似性能比可达到2k-1/(2k-1-1),k≥2;进一步将该方法推广到解答由不少于k个字母的子句构成的最大不全k满足问题,近似性能比亦可达到2k-1/(2k-1-1).利用解答最大不全k满足问题的近似算法,给出了解答最大k可满足问题的新近似算法,近似性能比可达到2k/(2k-1).文中最后证明了若P≠NP,则k≥4的最大不全k满足问题不能近似到小于2k-1/(2k-1-1),从而说明文中解答最大不全k满足问题的算法近似性能比是最优的. The satisfiability problem as well as the maximum satisfiability problem of conjunctive norm forms are the central problems in theoretical computer science.The maximum not-all-equal satisfiability problem is a generalization of the maximum satisfiability problem.The maximum not-all-equal satisfiability problem is named maximum not-all-equal k satisfiability problem,if each clause of its instance contains k(≥2)literals.Semi-definite programming relaxation is the frequently-used also the most typical method for solving the maximum not-all-equal satisfiability problems.To our knowledge at present,the best algorithms for the maximum not-all-equal 2,3and 4satisfiability problems come from the semi-definite programming relaxation methods given by Goemans and Williamson,Zwick,Karloff and Zwick,with performances 1.139(1/0.878),1.100 47(1/0.9087)and 8/7respectively.When k≥5,we have not seen any approximation algorithm for the maximum not-all-equal ksatisfiability problems.In this paper,we propose a local search algorithm to solve the maximum not-all-equal ksatisfiability problem.This algorithm can achieve the performance ratio 2k-1/(2k-1-1)for k≥2.We extend the method to propose a local search algorithm to solve the more generalized version of the maximum not-all-equal k satisfiability problem,with each clause containing at least k literals.This algorithm can still achieve theperformance ratio 2k-1/(2k-1-1).Using the method for the generalized version of the maximum not-all-equal ksatisfiability problem,we propose a new 2k/(2k-1)-approximation algorithm for generalized version of the maximumk satisfiability problem.Finally,we prove that if P≠NP,then the maximum not-all-equal k satisfiability problem cannot be approximated within 2k-1/(2k-1-1)for k≥4.This implies the performance ratio of our algorithm for the maximum not-all-equal ksatisfiability problem is optimal.
出处 《计算机学报》 EI CSCD 北大核心 2015年第8期1561-1573,共13页 Chinese Journal of Computers
基金 国家自然科学基金(61070019) 教育部博士点基金(20090131110009) 山东省自然科学基金(ZR2012FZ002)资助~~
关键词 局部搜索 算法 近似性能比 合取范式 可满足性 local search algorithm performance ratio conjunctive normal form satisfiability
  • 相关文献

参考文献29

  • 1Cook S A. The complexity of theorem-proving procedures/ / Proceedings of the 3rd Annual ACM Symposium on Theory of Computing. Shaker Heights. Ohio. USA. 1971: 151-158.
  • 2Papadimitirou C H. Yanakakis M Optimization. approximation. and complexity classes. Journal of Computer and System Sciences. 1991. 43(3): 425-440.
  • 3Abidor A. Berkovitch 1, Zwick U. Improved approximation algorithms for Max NAE-SA T and Max SAT / /Proceedings of the WAOA 2005. Palma de Mallorca , Spain, 2005. LNCS-3879. 2006: 27-40.
  • 4Papadimitirou C H. Computational Complexity. California. USA: Addison Wesley, Redwood City, 1993.
  • 5Han Q, Ye Y, Zhang J. Improved approximation for Max Set Splitting and Max NAE SAT. Discrete Applied Mathematics, 2004, 142(1-3): 133-149.
  • 6Johnson D S. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 1974, 9(3): 256-278.
  • 7Motwani R, Raghavan P. Randomized Algorithms. The Edinburgh Building, Cambridge CB2 2RU, UK: Cambridge University Press, 1995.
  • 8Yannakakis M. On the approximation of Maximum Satisfiability. Journal of Algorithms, 1994, 17(3): 475-502.
  • 9Goemans M X, Williamson D P. New 3/4-approximation algorithms for the maximum satisfiability problem. SIAM Journal on Discrete Mathematics, 1994, 7(4): 656-666.
  • 10Goemans M X, Williamson D P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 1995,42(6): 1115-1145.

二级参考文献25

  • 1Cook S A.The complexity of theorem-proving procedures//Proceedings of the 3rd Annual ACM Symposium on Theorey of Computing,Shaker Heights.Ohio,USA,1971:151-158.
  • 2Papadimitirou C H,Yanakakis M.Optimization,approximation,and complexity classes.Journal of Computer and System Sciences,1991,43(3),425-440.
  • 3Johnson D S.Approximation algorithms for combinatorial problems.Journal of Computer and System Sciences,1974,9(3),256-278.
  • 4Chen J,Friesen D,Zheng H.Tight bound on Johnson's algorithm for maximum satisfiability.Journal of Computer and System Sciences,1999,58(3):622-640.
  • 5Goemans M X,Williamson D P.New 3/4-approximation algorithms for the maximum satisfiability problem.SIAM Journal on Discrete Mathematics,1994,7(4):656-666.
  • 6Motwani R,Raghavan P.Randomized Algorithms,Cambridge,UK,Cambridge University Press,1995.
  • 7Goemans M X,Williamson D P.Improved approximation algorithms for maximum cut and satisfiability problems using semi-definite programming.Journal of the ACM,1995,42(6).1115-1145.
  • 8Feige U,Goemans M X.Approximating the value of two power proof systems,with applications to Max-2Sat and Max-Dicut//Proceedings of the 3rd Israel Symposium on Theorey and Computing Systems.Tel Aviv,Israel,1995:182-189.
  • 9Asano T,Williamson D P.Improved approximation algorithms for Max-Sat.Journal of Algorithms,2002,42 (1):173-202.
  • 10Trevisan L,Sorkin G B,Sudan M,Williamson D P.Gadets,approximation,and linear programming//Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science.Burlington,Vermont,1996:617-626.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部