期刊文献+

网络分析中求最大流的商空间方法 被引量:9

The Computation of Maximum Flow in Network Analysis Based on Quotient Space Theory
下载PDF
导出
摘要 该文研究利用商空间的保真、保假原理给出分析网络的新方法,并以求网络中两点的最大流量为例进行说明,主要工作包括:(1)给出利用保真、保假原理求解问题的基本原则;(2)给出将所研究的问题(求最大流问题)化成"问题求解"形式的方法;(3)利用商空间理论建立对应问题求解的保真、保假原理,并证明对所研究的问题,保真、保假原理均成立;(4)根据保真、保假原理给出求两点最大流量的方法.新方法对求所有的点对点的最大流的计算量由原来需要求n(n-1)/2次点对点的最大流,变成只要求(n-1)次点对点的最大流,显著降低了计算的复杂性. A novel network analysis technique by using"falsity preserving"and"truth preserving"properties are presented.It is illustrated with computing maximum flow between two points in the network.The main contributions are as follows:(1)The basic principles of the use of falsity preserving and truth preserving on solving problems.(2)The method of transformation from the maximum flow problem into the form of"problem solving".(3)The falsity preserving and truth preserving principle based on quotient space theory are established and proved to be correct on the corresponding problem solving.(4)The computation of maximum flow between two points in the network by using falsity preserving and truth preserving properties.By using this method,the computational complexity of maximum flow among all points is(n-1)times that between two points.However the existing method computational complexity is n(n-1)/2times.
作者 郑诚 张铃
出处 《计算机学报》 EI CSCD 北大核心 2015年第8期1705-1712,共8页 Chinese Journal of Computers
基金 国家自然科学基金(61073117 61273302) 安徽省自然科学基金(11040606M133) 安徽省高校自然科学研究重点项目(KJ2013A020)资助~~
关键词 粒计算 商空间 保真原理 商逼近原理 最大流 granular computing quotient space theory truth preserving quotient space approximation model maximum flow
  • 相关文献

参考文献6

二级参考文献143

  • 1Yiyu,(Y.Y.),Yao.Three Perspectives of Granular Computing[J].南昌工程学院学报,2006,25(2):16-21. 被引量:19
  • 2R K Ahuja, J B Orlin. A fast and simple algorithm for the maximum flow problem. Oper Res, 1989, 37(5) : 748~759.
  • 3R K Ahuja, J B Orlin, R E Tarjan. Improved time bounds for the maximum flow problem. SIAM J Computing, 1989, 18(5): 939-954.
  • 4N Alon. Generating pseudo-random permutations and maximum flow algorithms. Information Processing Letters, 1990, 35 ( 4 ) :201-203.
  • 5V King, S Rao, R Tarjan. A faster deterministic maximum flow algorithm. J Algorithms, 1994, 17(3): 447~474.
  • 6J Cheriyan, T Hagerup, K Mehlhom. An O( n^3)-time maximum flow algorithm. SIAMJ Computing, 1996, 25(6): 1144~1170.
  • 7H N Gabow. Scaling algorithms for network problems. J Comput System Sci, 1985, 31(2): 148-168.
  • 8R K Ahuja, J B Orlin. Distance-directed augmenting path algorithms for the maximum flow problem. Naval Research Logisties Quarterlv. 1991. 38(2): 413~430.
  • 9V M Malhotra, M P Kumar, S N Mahesh-wari. An O ( | V^3| )algorithm for finding maximum flows in networks. Information Processing Letters, 1978, 7(6) : 277~278.
  • 10A V Goldberg, R E Tarjan. Finding minimum-cost circulations by successive approximation. Math Oper Res, 1990, 15(3): 430~466.

共引文献272

同被引文献76

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部