期刊文献+

采用广义Pareto分布进行车辆荷载效应极值估计的研究 被引量:13

Extreme estimation for vehicle load effect based on generalized Pareto distribution
下载PDF
导出
摘要 为了解决车辆荷载效应数据间的相关性问题并能够充分利用样本数据,提出了一种改进的独立风暴法。首先提出了一种三次类阈值法进行数据的初步分析来获得阈值;然后考虑到简支梁桥的车辆荷载效应主要受单辆重车影响,提出了改进的独立风暴法进行独立同分布样本数据的提取;最后采用广义Pareto分布进行车辆荷载效应极值估计;利用该方法,对动态称重系统记录的国内某大桥实测数据进行了车辆荷载效应极值估计,并与超越阈值法、独立风暴法进行了对比分析,结果表明:在较短评估期(T<20年)内,三种方法均可以较好地预测荷载效应极值;而在中长评估期内,改进的独立风暴法预测值较高,预测结果偏于安全。 In order to solve data correlation problems for vehicle load effect and make full use of data samples,the modified method of independent storms( MMIS) was proposed. Firstly,a triple-class threshold method was proposed to obtain the threshold with the primary data analysis. Then,considering that the vehicle load effect of simply supported beam bridges was mainly affected by a single heavy vehicle,the MMIS was adopted to extract the independent and identically distributed( IID) sample data. Finally,the extreme vehicle load effect was estimated with the generalized Pareto distribution. In the end,the estimation of the extreme vehicle load effect was performed for the measured data of a bridge recorded with the weighinmotion( WIM). The results were compared with those of the peak-over-threshold method and those of the method of independent storms. The results showed that within the shorter estimation period( T 20years),all the three methods can be used to better predict the extreme load effect; while within the middle or longer estimation period,the estimation of the modified method of independent storms is higher and safer.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第15期7-11,22,共6页 Journal of Vibration and Shock
基金 国家自然科学基金委创新研究群体基金(51421064) 教育部博士点基金(20130041110031) 同济大学土木工程防灾国家重点实验室开放基金(SLDRCE12-MB-03)
关键词 车辆荷载效应 广义PARETO分布 阈值 独立风暴法 动态称重系统 vehicle load effect generalized Pareto distribution threshold method of independent storms weighinmotion(WIM)
  • 相关文献

参考文献13

  • 1Sivakumar B, Ghosn M, Moses F. Protocols for collecting and using traffic data in bridge design[M]. Transportation Research Board, 2011.
  • 2Kozikowski M. WIM based live load model for bridge reliability[D]. Nebraska: Dissertation to the University of Nebraska, 2009.
  • 3Nowak A S. WIM based lived load model for bridges[R]. Florida: Published in Transportation Board, 2011.
  • 4Galambos J. The asymptotic theory of extreme order statistics[M]. Malabar: Krieger, 1987.
  • 5Cook N J. Towards better estimation of extreme winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1982, 9(3): 295-323.
  • 6Bhattacharya B. The extremal index and the maximum of a dependent stationary pulse load process observed above a high threshold[J]. Structural Safety, 2008, 30(1): 34-48.
  • 7N?ss A, Gaidai O. Estimation of extreme values from sampled time series[J]. Structural Safety, 2009, 31(4): 325-334.
  • 8Mazas F, Hamm L. A multi-distribution approach to POT methods for determining extreme wave heights[J]. Coastal Engineering, 2011, 58(5): 385-394.
  • 9Wang Y, Xia Y, Liu X. Establishing robust short-term distributions of load extremes of offshore wind turbines[J]. Renewable Energy, 2013, 57: 606-619.
  • 10Caers J, Maes M A. Identifying tails, bounds and end-points of random variables[J]. Structural Safety, 1998, 20(1): 1-23.

二级参考文献16

  • 1"公路桥梁车辆荷载研究"课题组.公路桥梁车辆荷载研究[J].公路,1997,42(3):8-12. 被引量:89
  • 2Nowak A S, Lind N D. Practical bridge code calibration [J]. Journal of Structural Division, ASCE, 1979, 2:23 -- 31.
  • 3O'Connor A, O'Brien E J. Traffic load modeling and factors influencing the accuracy of predicted extremes [J] Canadian Journal of Civil Engineering, 2005, 32: 270-- 278. (in Chinese).
  • 4Sivakumar B, Ghosn M, Moses F. Protocols for collecting and using traffic data in bridge design [R]. Washington: National Cooperative Highway Research Program, 2008.
  • 5Kozikowski M. WIM based live load model for bridge reliability [D]. Nebraska: Dissertation to the University of Lincoln, 2009.
  • 6Nowak A S. WIM based lived load model for bridges [R].Florida: Published in Transportation Board, 2011.
  • 7Thofl-Christensen P, Baker M J. Structural reliability: Theory and its applications [M]. New York: Springer-Verlag, 1982:1--324.
  • 8Christian C. Optimal extrapolation of traffic load effects [J]. Structural Safety, 2001, 23:31--46.
  • 9Castillo E, Hadi A S. Fitting the generalized pareto distribution to data [J]. Journal of the American Statistical Association, 1997, 92(440): 1609-- 1620.
  • 10Fisher R A, Tippet L H C. Limiting forms of the frequency distribution in the largest particle size and smallest number of a sample [J]. Proceeding of the Cambridge Philosophical Society, 1928, 24(2): 180-- 190.

共引文献29

同被引文献94

引证文献13

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部