期刊文献+

基于改进局部线性嵌入算法的故障特征提取方法 被引量:4

Fault feature extraction based on improved locally linear embedding
下载PDF
导出
摘要 针对局部线性嵌入算法在故障特征提取中易受异常特征值、邻域大小和嵌入维数等因素影响的问题,对局部线性嵌入方法的重构权值估计模型、邻域大小和嵌入维数估计模型进行改进。用互相关熵取代欧式距离用于向量相似度测量,提出基于互相关熵的重构权值估计模型,并且采用拉格朗日展开式和拉格朗日乘子法进行模型简化降低计算复杂度,达到降低异常特征值对特征提取精度影响的目的。应用Ncut准则建立邻域大小和嵌入维数的估计模型,实现参数的自动选取。将改进的局部线性嵌入方法应用于轴承故障特征提取,并与其它方法进行比较,结果表明推荐方法的特征提取精度更高。 The performance of locally linear embedding( LLE) for fault feature extraction is influenced by noise,embedding dimension and neighborhood size. Here,it was improved with a new estimation model of weight coefficients and a new estimation model of neighborhood sizes and embedding dimension. Cross-correntropy was used to replace Euclidean distance to measure similarity of vectors. An estimation model of weight coefficients was created based on crosscorrentropy. At the same time,the model was simplified with Lagrange method to overcome computation difficulties. The model of weight coefficients based on cross-correntropy improved the performance of LLE and reduced the influence of noise on fault feature extraction. Ncut criterion was employed to choose neighborhood sizes and embedding dimension. A model for choosing their parameters in an automatic way was created. The improved LLE was employed in fault feature extraction of rolling bearings. The test results for fault diagnosis of rolling ball bearings showed that compared with other approaches,the proposed approach is more effective to extract fault features from vibration signals of rolling bearings and to enhance the classification of failure patterns.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第15期201-204,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51205294 61271008)
关键词 故障 特征提取 互相关熵 局部线形嵌入 嵌入维数 fault feature extraction cross-correntropy LLE embedding dimension
  • 相关文献

参考文献16

二级参考文献37

共引文献57

同被引文献31

  • 1李锋,田大庆,王家序,杨荣松.基于有监督增量式局部线性嵌入的故障辨识[J].振动与冲击,2013,32(23):82-88. 被引量:7
  • 2Li Ben-wei, Zhang Yun. Supervised locally linear embedding projection (SLLEP) for machinery fault diagnosis [ J ]. Mechanical systems and Signal Processing,2011,25:3125 - 3134.
  • 3Zhao Ling-xiao, Zhang Zhen-yue. Supervised locally linear embedding with probability-based distance for classification [ J ]. Computers and Mathematics with Applications, 2009, 57:919 - 926.
  • 4Ridder D D, Kouropteva O, Okun O. Supervised locally linear embedding[ C]//Proceedings of the Joint International Conference, ICANN/ICONIP. Lecture Notes in Computer Science, Springer,Heidelberg, 2003:333 - 341.
  • 5Rowels S T,Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000,290 ( 5500 ) : 2323 - 2326.
  • 6Nichols J M, Bucholtz F, Nousain B. Automated, rapid classification of signals using locally linear embedding [ J ]. Expert Systems with Applications, 2011, 38:13472 -13474.
  • 7Kouropteva O, Okun O, Pietikainen M. Selection of the optimal parameter value for the locally linear embedding algorithm [ C ]//In: Fisrt Internat. Conf. on Fuzzy Systems and Knowledge l)iscovery,2002.
  • 8Shi Jian-bo, Malik J. Normalized cuts and image segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 888 - 905.
  • 9Tabatabaei S S, Coates M, Rabbat M. GANC: Greedy agglomerative normalized cut for graph clustering [ J ]. Pattern Recognition, 2012, 45:831 -843.
  • 10Liu Yan, Gu Xue-ping. Skeleton-network reconfiguration based on topological characteristics of scale-free networks and discrete particle swarm optimization [ J ]. IEEE Transactions on Power Systems, 2007, 22 ( 3 ) : 1267 - 1274.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部