期刊文献+

变分数阶振子振动控制方法研究 被引量:3

Active vibration control method for variable order oscillator
下载PDF
导出
摘要 针对含变分数阶的无量纲振子振动方程,考虑变分数阶微分算子表达式的复杂性,直接进行控制器设计不现实。通过分析位移时程曲线,采用截断变分数阶微分算子方式获得较好拟合效果。提出变遗忘因子概念,使变分数阶算子变为有限阶次,用其进行控制器设计成为可能,并仿真实例验证该方法的有效性。 The dimensionless version of a model oscillator was studied, whose equation of motion is given. Due to the complication of the approximate expression of variable order(VO) differential operator, it is difficult to design directly the controller. Based on the analysis of the curve of displacement versus time, a truncation mode of VO differential operator was proposed. The concept of variable oblivion factor was introduced, meanwhile, an optimal controller was developed for the VO differential equation under study in order to reduce the dynamic responses.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第16期119-121,134,共4页 Journal of Vibration and Shock
基金 国家自然科学基金重点项目(U1134207) 国家自然科学基金(51178160)
关键词 变分数阶 振动控制 变遗忘因子 截断模态 VO vibration control variable oblivion factor truncation mode
  • 相关文献

参考文献11

  • 1孙春艳,徐伟.分数阶导数阻尼下非线性随机振动结构响应的功率谱密度估计[J].应用力学学报,2013,30(3):401-405. 被引量:6
  • 2石星星,周星德,竺启泽,刘广波,刘谦敏.建筑结构含分数阶振动控制的最优阶次研究[J].振动.测试与诊断,2013,33(2):269-272. 被引量:2
  • 3Saptarshi D, Amitava G, Shantanu D. Generalized frequency domain robust tuning of a family of fractional order PI/PID controllers to handle higher order process dynamics[J]. Advanced Materials Research, 2012, 403: 4859-4866.
  • 4Eva K, Seenith S. Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions[J]. Nonlinear Analysis: Real World Applications, 2012,13(3): 1489-1497.
  • 5Coimbra C F M. Mechanics with variable-order differential operators[J]. Ann. Phys. ,2003,12(11/12): 692-703.
  • 6Shyu J J, Pei S C, Chan C H. An iterative method for the design of variable fractional-order FIR differintegrators[J]. Signal Processing, 2009, 89(3): 320-327.
  • 7Chan C H, Shyu J J, Yang R H. Iterative design of variable fractional-order IIR differintegrators[J]. Signal Processing, 2010, 90(2): 670-678.
  • 8Soon C M, Coimbra C F M, Kobayashi M H. The variable viscoelasticity oscillator[J]. Ann. Phys., 2005,14(6):378-389.
  • 9Balachandran K, Park J Y, Anandhi E R. Controllability of fractional integrodifferential systems in Banach spaces[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3(4): 363-367.
  • 10Diaz G, Coimbra C F M. Nonlinear dynamics and control of a variable order oscillator with application to the van der pol equation[J]. Nonlinear Dynamics, 2009,56(1/2):145-157.

二级参考文献19

  • 1Bagley R L, Torvik P J. Fractional calculus a different approach to the analysis of viscoelastically damped structures[J]. AIAA Journal, 1983, 21(5): 741-748.
  • 2Bagley R L, Torvik P J. Fractional calculus in the transient analysis ofviscoelastically damped structures[J]. AIAA Journal, 1985, 23(6): 918-925.
  • 3Koeller R C. Application of fractional calculus to the theory of viscoelasticity[J]. ASME Journal of Applied Mechanics, 1984, 51 (2): 299-307.
  • 4Gaul L, Klein P, Kemple S. Impulse response function of an oscillator with fractional derivative in damping description[J]. Mechanics Research Communications, 1989, 16(5): 297-305.
  • 5Wahi P, Chatterjee A. Averaging for oscillations with light fractional order damping[C]//Proceedings of ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Chicago." ASME, 2003: 721-727.
  • 6Huang Z L, Jin X L. Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative[J]. Journal of Sound and Vibration, 2009, 319(3/5): 1121-1135.
  • 7Podlubny I. Fractional differential equations[M]. London: Academic Press, 1999.
  • 8Diethelm K, Ford N J, Freed A D, et al. Algorithms for the fractional calculus: A selection of numerical methods[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(6/8): 743-773.
  • 9Diethelm K, Ford N J, Freed A D. Apredictor-corrector approach for the numerieaU solution of fractional differential equations[J].Nonlinear Dynamics, 2002, 29(1/4): 3-22.
  • 10Yuan L, 'Agrawal O P. A numerical scheme for dynamic systemcontaining fractional derivatives[J]. Journal of Vibration and Acoustics, 2002, 124(2): 321-324.

共引文献6

同被引文献20

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部