期刊文献+

勒让德伪谱法求解三维刚体摆姿态运动最优控制问题 被引量:1

LEGENDRE PSEUDO-SPECTRAL METHOD FOR SOLVING THE 3D RIGID PENDULUM MOTION OPTIMAL CONTROL PROBLEM
下载PDF
导出
摘要 研究伪谱法求解三维刚体摆姿态运动最优控制问题.针对三维刚体摆这类含有约束的力学模型,提出了基于勒让德伪谱法的三维刚体摆姿态最优控制方法.利用插值逼近设计了三维刚体摆姿态运动最优控制算法,得到了三维刚体摆的姿态最优控制轨迹,并结合松弛参数来控制插值点的取值,寻找满足的可行解.仿真结果表明,基于勒让德伪谱法的最优控制算法使得三维刚体摆能以较小的误差运动到期望的末端姿态,且计算速度快,能够获得精度较高的控制输入量. This paper studies the Legendre pseudo-spectral method for solving the 3D rigid pendulum motion optimal control problem. For the 3D rigid pendulum constrained mechanical model, a 3D Legendre pseudo- spectral method is proposed based on the rigid body posture and the optimal control method. By using the Legendre interpolation approximation method to design the 3D rigid pendulum motion optimal control algorithm, the optimal attitude control trajectory of the 3D rigid pendulum is obtained, and combined with the relaxation factor control, a satisfactory feasible solution can be found. The simulation results show that with the optimal Legendre pseudo-spectral method control algorithm, the 3D rigid pendulum goes to the end effector pose with a smaller error motion, at a fast calculation speed, and the control inputs can be obtained with a high precision. This paper also verifies the feasibility of the proposed optimal control algorithm.
作者 朱宁 戈新生
出处 《力学与实践》 北大核心 2015年第4期481-487,共7页 Mechanics in Engineering
基金 国家自然科学基金资助项目(11472058)
关键词 三维刚体摆 姿态运动 最优控制 伪谱法 3D rigid pendulum, attitude motion, optimal control, pseudo-spectral method
  • 相关文献

参考文献5

二级参考文献69

  • 1王芳,张洪华.欠驱动刚性航天器旋转轴稳定研究[J].宇航学报,2007,28(5):1133-1137. 被引量:13
  • 2戈新生,孙鹏伟.欠驱动刚性航天器姿态的非完整运动规划粒子群算法[J].宇航学报,2006,27(6):1233-1237. 被引量:7
  • 3刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418. 被引量:575
  • 4FAHROO F, ROSS M I. Costate estimation by a Legendre pseudospectral method I J]. Journal of Guidance, Control, and Dynamics, 2001, 24 (2) :270 - 277.
  • 5ELNAGAR G, KAZEMI M A, RAZZAGHI M. The pseudospectral Legendre method for discretizing optimal control problems [ J ]. IEEE Transactions On Automatic Control, 1995, 40(10) : 1793 - 1796.
  • 6FAHROO F, ROSS M I. Direct trajectory optimization by a estimation by a Chebyshev pseudospectral method [ J ]. Journal of Guidance, Control, and Dynamics, 2002, 25 ( 1 ) : 160 - 166.
  • 7CATER T, HUMI M. Fuel-optimal rendezvous near a point in general Keplerian orbit [ J ]. Journal of Guidance, Control, and Dynamics, 1987, 10(6) :567 -573.
  • 8YAMANAKA K, ANKERSEN F. New state transition matrix for relative motion on an arbitrary elliptical orbit [ J ]. Journal of Guidance, Control, and Dynamics, 2002, 25( 1 ) :60 -66.
  • 9SENGUPTA P, VADALI S R. Analytical solution for power-limited optimal rendezvous near an elliptic orbit [ J ]. Journal of Optimiz Theory and Applications, 2008, 138:115 - 137.
  • 10BATTIN R H. An introduction to the mathematics and methods of astrodynamics [M]. New York:AIAA, 1999.

共引文献14

同被引文献12

  • 1雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 2Shen J, Sanyal A K, Chaturvedi N A, et al. Dynamics and control of a 3D pendulum // Proceedings of the 43rd 1EEE Conference on Decision and Control. Bahamas, 2004:323-328.
  • 3Chaturvedi N A, Lee T, Leok M, et al. Nonlinear dynamics of the 3D pendulum. SIAM Journal on Applied Dynamical Systems, 2007, 7(2): 144-160.
  • 4Gong Q, Ross I M, Kang W, et al. Connections between the convector mapping theorem and conver- gence of pseudospectral methods for optimal control. Computational Optimization and Applications, 2008, 41:307-335.
  • 5Fahroo F, Ross I M. Direct trajectory optimization by a Chebyshev pseudospectral method. Journal of Gui- dance, Control, and Dynamics, 2002, 25(1): 160-166.
  • 6Shamsi M, Dehghan M. Determination of a control function in three-dimensional parabolic equations by Legendre pseudospectral method. Numeral Methods Partial Differential Equation, 2012, 28:74-93.
  • 7Lu P. Regulation about time-varying trajectories: precision entry guidance illustrated. Journal of Gui- dance, Control, and Dynamics, 1999, 22(6): 784-790.
  • 8Yah H, Fahroo F, Ross I M. Optimal feedback control laws by legendre pseudospectral approximations // Proceedings of the American Control Conference. Piscataway, 2001:2388-2393.
  • 9Chaturvedi N A, McClamroch N H. Asymptotic stabilization of the hanging equilibrium manifold of the 3D pendulum. International Journal of Robust and Nonlinear Control, 2007, 17:1435-1454.
  • 10Chaturvedi N A, McClamroch N H, Bernstein D S. Stabilization of a specified equilibrium in the inverted equilibrium manifold of the 3D pendulum // Procee- dings of the 2007 American Control Conference. New York, 2007:2485-2490.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部