期刊文献+

介孔Li_(0.5)La_(0.5)TiO_3的制备及在聚合物/无机纳米复合固体电解质中的应用

Preparation of Mesoporous Li_(0. 5)La_(0. 5)TiO_3 and Its Application in Polymer/Inorganic Nanocomposite Solid Electrolytes
下载PDF
导出
摘要 首次采用凝胶冷冻干燥法制备孔径为20 nm左右的钙钛矿型Li0.5La0.5Ti O3(LLTO)介孔固体电解质。通过X射线衍射、扫描电镜、比表面与孔隙分析对其晶体结构和介孔结构进行表征。交流阻抗分析结果显示,相比本体LLTO,介孔LLTO的室温晶粒电导率变化不大,但由于晶界数量的增加导致室温晶界电导率有所下降。将制得的介孔LLTO加入(PEO)8∶Li TFSI聚合物电解质中形成聚合物/介孔无机纳米复合固体电解质,其室温导电率达5.38×10-5S/cm,较纯(PEO)8∶Li TFSI提高了4.2倍。 For the first time the gel freeze-drying method was used to prepare peroverskite-type Li0. 5La0. 5Ti O3 mesoporous solid electrolyte. Its crystalline structure and porous structure were investigated by XRD,SEM,specific surface and pore size analyzer. Ac impedance analysis demonstrates that compared to the bulk LLTO,mesoporous LLTO has similar grain conductivity at room temperature,but relatively lower total conductivity due to the increase of grain boundaries. In addition with 10% mesoporous LLTO,the conductivity of the polymer electrolyte( PEO)8∶ Li TFSI is significantly improved. At room temperature,the composite solid electrolyte with mesoporous LLTO has a conductivity of 5.38 × 10^-5S / cm,4. 2 times higher than that of pure( PEO)8∶ Li TFSI.
作者 付举 张楚虹
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2015年第8期139-143,共5页 Polymer Materials Science & Engineering
基金 国家自然科学基金优秀青年科学基金(51222305) 国家973重大科学研究计划青年科学家专题项目(2013CB934700)
关键词 冷冻干燥 钙钛矿型Li0.5La0.5TiO3 (PEO)8∶LiTFSI 电导率 复合固体电解质 freeze-drying peroverskite-type Li0.5La0.5TiO3 (PEO)8∶ Li TFSI conductivity composite solid electrolyte
  • 相关文献

参考文献12

  • 1Inaguma Y, Chen L Q, hoh M, et al. High ionic conductivity in lithium lanthanum titanate[ J ]. Solid State Commun. , 1993, 86: 689-693.
  • 2Belous A G. Lithium ion conductors based on pervoskite in La2/3_xLi3xTiO3[J]. J. Eur. Ceram. Soc, 2001, 21: 1797-1800.
  • 3Johnson P L, Kennedy M W, Smith C M, et al. investigation of the inherent electrical potential of PEO electrolyte films [ J ]. Electrochim. Aeta, 2007, 53: 1490-1496.
  • 4Gorecki W, Jeannin M, Belorizky E, et al. Physical properties of solid polymer electrolyte PEO ( LiTFSI ) complexes [ J ]. J. Phys.Condens. Matter, 1998, 7: 6823-6832.
  • 5Hassoun J, Lee S, Sun Y K, et al. An advanced lithium ion battery based on high performance electrode materials[J]. J. Am. Chem. Soc., 2011, 133: 3139-3143.
  • 6Shen L F, Li H S, Cao G Z, at al. General strategy for designing core-shell nanoatructured materials for high-power lithium ion batteries[J]. Nano Lett., 2012, 12: 5673-5678.
  • 7Dokko K, Akutagawa N, Kanamura K, et al. Preparation of three dimensional/y ordered maeroporous Li0.35 La0.15 TiO3 by colloidal crystal templating process[J]. Solid State Ionics, 2005, 176: 2345- 2348.
  • 8Deville S. Freeze-cssting of porous ceramics: a review of current aehievements and issues[J]. Adv. Eng. Mater., 2008, 10: 155-169.
  • 9Inaguma Y, hoh M: Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides[J ]. Solid state Ionics, 1996, 86/87/88: 257-260.
  • 10Zou Y, Inoue N, Ohara K, et al. Structure and lithium ionic conduction of B-site Al-ion in La4/3.yLi3yTi2O6 [J ]. Ionics, 2004, 10 : 463-468.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部