期刊文献+

有leader的二阶时滞多智能体系统一致性分析 被引量:2

Consensus analysis of second-order multi-agent systems with leader and time-delay
下载PDF
导出
摘要 针对有向定拓扑网络结构下有leader的二阶时滞多智能体系统,采用频域分析方法进行研究,得到各个智能体与leader达到一致的充分必要条件,讨论在速度项系数固定时位置项系数与最大容许时滞的关系,并给出最大容许时滞的计算方法.最后,通过仿真验证所提协议的有效性和所得结论的正确性. Second-order multi-agent systems with directed fixed-topological network structure, leader, and time-delay is investigated with frequency domain analysis method and a sufficient and necessary condition is obtained to realize the consensus of agents with leader. The relationship of position term coefficient to maximum allowable time-delay is discussed when velocity term coefficient is fixed. The computation method of maximum allowable time-delay is given, also. Finally a simulation example is provided to show the effectiveness of the protocol presented and the validity of the result obtained.
出处 《兰州理工大学学报》 CAS 北大核心 2015年第4期90-94,共5页 Journal of Lanzhou University of Technology
基金 黑龙江教育厅科学技术研究项目(12533077)
关键词 二阶多智能体系统 一致性 定拓扑 时滞 second-order agents systems consensus fixed topology time-delay
  • 相关文献

参考文献11

  • 1HU ] P, I-lONG YG. Leader-following coordination of multi-a- gent systems with coupling time delays [J]. Physiea A: Statis- tical Mechanics and its Applications, 2007,374(2) : 853-863.
  • 2PENG K, YANG Y P. Leader-following consensus problem with a varying-veloclty leader and time-varying delays [J]. Physica A: Statistical Mechanics and its Applications, 2009,388 (2) : 193-208.
  • 3PEN W, MOORE K, CHEN Y. High-order consensus and model reference consensus algorithms in cooperative control ofmultivehicle systems J[J]. Journal of Dynamic Systems, Meas- urement, and Control, 2007,129(5) ~ 678-688.
  • 4TIAN Y P,LIU C L. Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection per- turbations [J]. Automatica, 2009,45(5) : 1347-1353.
  • 5LIN P,JIA Y M,DU J P, et al. Distributed consensus control for second-order agents with fixed topology and time-delay -C3//Proceedings of the 26th Chinese Control Conference. Zhangjiajie: Is. rL -I, 2007 : 577-581.
  • 6ZHANG Y J, YANG Y. Finite-time consensus of second-order leader-following multi-agent systems without velocity meas- urements [J]. Physics Letters A, 2013,377(3/4) : 243-249.
  • 7RUDY C G, NEJAT O. Exact stability analysis of second-order leaderless and leader-follower consensus protocols with ration- ally-independent multiple time delays l-J3. Systems ~ Control Letters, 2013,62 (6) : 482-495.
  • 8QIN J, GAO H J, ZHENG W X. Second-order consensus for multi-agent systems with switching topology and communica- tion delay I-J3. Systems ~y- Control Letters, 2011,60 (6) : 390- 397.
  • 9ZHANG Q, CHEN S H, YU C C. Impulsive consensus prob- lem of second-order multi-agent systems with switching topol- ogies [J]. Communications in Nonlinear Science and Numerical Simulation, 2012,17(1) : 9-16.
  • 10HUG Q. Robust consensus tracking of a class of second-or- der multi-agent dynamic systems [J3. Systems & Control Letters, 2012,61(1) : 134-142.

同被引文献5

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部