期刊文献+

基于扩展神经网络算法的弱信号分离技术在滩坝砂储层预测中的应用 被引量:2

APPLICATION OF WEAK-SIGNAL SEPARATION TECHNOLOGY BASED ON EXTENDED NEURAL NETWORK ALGORITHM TO PREDICTING BEACH-BAR SANDSTONE RESERVOIRS
下载PDF
导出
摘要 滩坝砂储集体具有分布较广、厚度较薄、空间分布不连续的特征。地震剖面上,通常是多个砂体以复合波的形式出现,很难形成单独的反射。滩坝砂储层信息的弱信号常被背景信息淹没,无法准确识别储层。针对滩坝砂储层的地震反射信号特点,将扩展交替投影神经网络算法引入到地震领域,对地震资料进行弱信号分离,并将算法应用到识别滩坝砂储层中,解析出砂体(组)在地震剖面上的展布特征。通过对理论模型及实际资料的试算,处理后的地震资料可以较好地展示储层展布特征,有利于滩坝砂体的识别。 Beach-bar sandstone reservoirs are characterized by wide distribution, thin thickness, and discontinuous space distribution. In seismic profile, the reservoirs including multiple sandbody often appear a form of compound wave, uneasily to form an independent reflection.We can not accurately identify them because their weak signal is often submerged into background information. So, an algorithm of extended neural network is presented to carry on the study of weak-signal separation for seismic data. And this algorithm has been applied to reservoir identification. Some distribution features of sandstones were obtained. After theoretical model and actual calculation, some processed seismic data can represent reservoir distribution features very well,which is conducive to identifying beach-bar sandbody.
出处 《天然气勘探与开发》 2015年第3期39-42,9-10,共4页 Natural Gas Exploration and Development
关键词 滩坝砂岩 神经网络 信号分离 储层预测 beach-bar sandstone,neural network,signal separation,reservoir prediction
  • 相关文献

参考文献7

二级参考文献38

  • 1王西文.相对波阻抗数据体约束下的多井测井参数反演方法及应用[J].石油地球物理勘探,2004,39(3):291-299. 被引量:31
  • 2[1]Wang J, Jin Y, Fang C. A data reconstruction method with wavelet transform [A]. 13th World Congress International Federation of Automatic Control, June 30-July 5, 1996, San Francisco, California, USA.
  • 3[2]Mallat S G. A theory for multiresolution signal decomposition: The wavelet representation [J]. IEEE Trans Patt Anal Mach Intell., 1989, 11(7).
  • 4[3]Combettes P L, Trussell H J. Method of successive projections for finding a common point of sets in metric spaces [J]. Journal of Optimization Theory And Applications, 1990, 67(3).
  • 5[4]Cetin A E, Ansari R Signal recovery from wavelet transform maxima [J]. IEEE Trans Signal Processing, 1994, 42(1).
  • 6[5]Daubechies I. Ten lectures on wavelets [R]. SIAM, Philadelphia, PA, 1992.
  • 7信荃麟,石油大学学报,1989年,13卷,5期,11页
  • 8吴崇筠,沉积学报,1986年,4卷,4期,1页
  • 9Greg P et al. Interpretational applications of spectral decomposition in reservoir characterization. The Leading Edge,1999,18(8):353-358.
  • 10李庆忠.走向精确勘探的道路-高分辨率系统工程剖析[M].北京:石油工业出版社,1993..

共引文献230

同被引文献32

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部