摘要
设G是一个有完美匹配M的图.若G的边集S满足G-S有唯一完美匹配,则称S为反强迫集.包含边数最少的反强迫集叫做极小反强迫集,其边的数目叫做图G的反强迫数.DamirVukiěevi?等曾给出链状卡塔型苯图的反强迫数,但我们发现该结论存在问题,本文修正了并完善了链状卡塔型苯图的反强迫数.
Let G be a graph that admits a perfect matchingM. An anti-forcing set of G is the edge set S such that G-S has a unique perfect matching. The anti-forcing set of the smallest cardin Damir ality is called the minimal anti-forcing set, and its cardinality is the anti-forcing number of G and Trinajatic gave an anti-forcing number of chain cats-condensed benzenoids, but we find the conclusion has some faults. In this paper, we correct the result and consummate the anti-forcing number of cata-condensed benzenoids.
出处
《五邑大学学报(自然科学版)》
CAS
2015年第3期1-4,共4页
Journal of Wuyi University(Natural Science Edition)
基金
国家自然科学基金资助项目(11226286)
惠州学院博士启动基金资助项目(C5110208)
关键词
链状卡塔型苯图
完美匹配
反强迫数
cata-condensed benzenoids
perfect matching
anti-forcing number