摘要
一个双色有向图D是本原的,如果存在非负整数h和k,且h+k>0,使得D中的每对顶点(i,j)都存在从i到j的(h,k)-途径.定义h+k的最小值为双色有向图D的本原指数.研究了一类双圈双色有向图,给出了该双色有向图的本原条件和本原指数的上界,并对极图进行了刻画.
A two-colored digraph D is primitive if there exist nonnegative integers h and k with h+k 〉0 such that for each pair (i, j) of vertices there exists a (h,k)-path from i toj in D and the minimum value of (h+ k) is defined as the exponent of the primitive two-colored digraph. In this paper, a class of two-colored digraphs with two cycles is studied, some primitive conditions of a two-colored digraph D and the upper bound of the exponents are given, and the extremal two-colored digraphs are characterized.
出处
《五邑大学学报(自然科学版)》
CAS
2015年第3期12-15,共4页
Journal of Wuyi University(Natural Science Edition)
基金
山西省高等学校科技创新项目(20151113
项目名称:非负矩阵对的本原指数)
广西高校科研项目(YB2014335
项目名称:双色及多色有向图本原指数的研究)
关键词
双色有向图
本原指数
极图
two-colored digraphs
primitive exponents
extremal digraphs