摘要
在多用户MIMO系统下行链路中,块对角化(Block diagonalization,BD)预编码算法的和速率性能要优于匹配滤波算法(Matched filter,MF)和迫零算法(Zero-forcing,ZF)。然而,传统的BD算法利用矩阵分解来构造除当前用户的其他所有用户信道的零空间,需要O(N2)浮点运算次数(Float point operations,FLOPs)。当基站的天线数N趋向于大规模时,BD算法计算复杂度巨大。本文提出一种基于投影子方法构造其他用户合成信道的零空间的BD算法,该算法仅需O(N)FLOPs。仿真表明:同传统的BD算法相比,本文所提出的低复杂度BD算法显著地降低了实现复杂度,而和速率性能损失微小,仍然优于MF和ZF,并且当N趋向于大规模时,它的和速率性能趋向于传统的BD算法和SVD算法。
In multi-user MIMO downlink with multi-antennas at user terminals,the block diagonalization(BD)precoder obtains a better sum-rate performance than matched filter(MF)and zero-forcing(ZF),thus becomeing an attractive precoder.However,the conventional BD generates the null space for all channel matrices excluding the current user by using singular-value decomposition(SVD)and requires float point operations(FLOPs)of order O(N2).As the antennas number Nat base station(BS)tends to be a large-scale one,computational complexity increases sharply on BS.Thus,a novel low-complexity implementation for BD with a complexity of order O(N)FLOPs is proposed,where the null space of other users′channel matrices is constructed by aprojection matrix.Simulation and analysis exhibit that the proposed low-complexity BD significantly reduce the complexity,compared with the conventional BD and regularized block diagonalization(RBD)at the cost of a slight sum-rate loss.The algorithm performs better than MF and ZF.Meanwhile,the sum-rate performance is similar to the conventional BD and SVD as Napproaches a large scale number.
出处
《数据采集与处理》
CSCD
北大核心
2015年第4期760-765,共6页
Journal of Data Acquisition and Processing
基金
国家自然科学基金(61271230
6147210)资助项目
中央高校基本科研业务费专项资金(30920130122004)资助项目
东南大学移动通信国家重点实验室开放课题(2013D02)资助项目
关键词
大规模MIMO
预编码
计算量
块对角化
低复杂度
和速率
massive MIMO
precoder
computational amount
block diagonalization
low-complexity
sum-rate