期刊文献+

基于大规模MIMO网络的低复杂度块对角化算法

Low-Complexity Block Diagonalization Precoder for Massive MIMO Networks
下载PDF
导出
摘要 在多用户MIMO系统下行链路中,块对角化(Block diagonalization,BD)预编码算法的和速率性能要优于匹配滤波算法(Matched filter,MF)和迫零算法(Zero-forcing,ZF)。然而,传统的BD算法利用矩阵分解来构造除当前用户的其他所有用户信道的零空间,需要O(N2)浮点运算次数(Float point operations,FLOPs)。当基站的天线数N趋向于大规模时,BD算法计算复杂度巨大。本文提出一种基于投影子方法构造其他用户合成信道的零空间的BD算法,该算法仅需O(N)FLOPs。仿真表明:同传统的BD算法相比,本文所提出的低复杂度BD算法显著地降低了实现复杂度,而和速率性能损失微小,仍然优于MF和ZF,并且当N趋向于大规模时,它的和速率性能趋向于传统的BD算法和SVD算法。 In multi-user MIMO downlink with multi-antennas at user terminals,the block diagonalization(BD)precoder obtains a better sum-rate performance than matched filter(MF)and zero-forcing(ZF),thus becomeing an attractive precoder.However,the conventional BD generates the null space for all channel matrices excluding the current user by using singular-value decomposition(SVD)and requires float point operations(FLOPs)of order O(N2).As the antennas number Nat base station(BS)tends to be a large-scale one,computational complexity increases sharply on BS.Thus,a novel low-complexity implementation for BD with a complexity of order O(N)FLOPs is proposed,where the null space of other users′channel matrices is constructed by aprojection matrix.Simulation and analysis exhibit that the proposed low-complexity BD significantly reduce the complexity,compared with the conventional BD and regularized block diagonalization(RBD)at the cost of a slight sum-rate loss.The algorithm performs better than MF and ZF.Meanwhile,the sum-rate performance is similar to the conventional BD and SVD as Napproaches a large scale number.
出处 《数据采集与处理》 CSCD 北大核心 2015年第4期760-765,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61271230 6147210)资助项目 中央高校基本科研业务费专项资金(30920130122004)资助项目 东南大学移动通信国家重点实验室开放课题(2013D02)资助项目
关键词 大规模MIMO 预编码 计算量 块对角化 低复杂度 和速率 massive MIMO precoder computational amount block diagonalization low-complexity sum-rate
  • 相关文献

参考文献19

  • 1Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Sig- nal Processing Magazine, 2013,30 (1) : 40-60.
  • 2Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communication, 2010,9(11) : 3590-3600.
  • 3Larsson E G, Tufvesson F, Edfors O, et at. Massive MIMO for next generation wireless systems[J]. IEEE Communication Magazine, 2014,52(2) :186-195.
  • 4Hoydis J, Brin S T, Debbah M. Massive MIMO in the UL/DL of cellular networks: How many antennas do we need[J]. IEEE Journal Selected Areas Communications, 2013,31 (2) : 160-171.
  • 5Spencer Q H, Swindlehust A L, Haardt M. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels[J]. IEEE Transactions Signal Processing, 2004,52 (2) : 461-471.
  • 6Wiesel A, Eldar Y C, Shamai S. Zero-forcing precoding and generalized inverses[J]. IEEE Transactions Signal Processing, 2008,56(9) :4409-4418.
  • 7Choi L U, Mureh R D. A transmit preproeessing technique for muhiuser MIMO systems using a decomposition approach[J]. IEEE Transactions Wireless Communication, 2004,3 (1) : 20-24.
  • 8. Sadek M, Tarighat A, Sayed A H. A leakage-based precoding scheme for downlink multi-user MIMO channels[J]. IEEE.Transactions Wireless Communication, 2007,6(5):1711-1721.
  • 9Liu W, Yang L L, Hanzo L. SVD-assisted multiuser transmitter and multiuser detector design for MIMO systems[J]. IEEE Transactions Vehicle Technology, 2009,58(2) :1016-1021.
  • 10Peel C B, Hochwald B M, Swindlehurst A L. A vector-perturbation technique for near-capacity multi-antenna multiuser communication-part I : Channel inversion and regularization[J]. IEEE Transactions Communication, 2005,53( 1 ) : 195-202.

二级参考文献2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部