期刊文献+

基于变步长序贯压缩的频谱快速感知算法 被引量:1

Spectrum Sensing Algorithm Based on Variable Step-Size Sequential Compressed Sampling
下载PDF
导出
摘要 对信号稀疏度未知甚至时变的频谱感知应用场景,将自适应思想与序贯压缩频谱感知技术相结合,提出了一种可变步长序贯压缩频谱快速感知算法。新算法建立了下一次判决所需观测值数目步长因子与当前对数似然比距门限距离之间的函数关系,克服了现有的序贯压缩检测算法以固定步长增加观测值的不足。分别以分段函数和抛物线函数为步长因子调整规则进行理论分析和仿真实验。仿真结果表明:与现有的序贯压缩检测算法相比,变步长算法具有检测速度快、观测值数目少和计算复杂度小等优点。 The signal sparsity is often unknown,or even changed with time in spectrum sensing.Therefore,a variable step-size sequential compressed detection algorithm is proposed by combining the adaptive theory with the sequential compressed spectrum sensing technology.The functional relationship is established between step-size factor of the next needed measurement numbers and current distance from the likelihood ratio and the detection thresholds.In addition,the shortcoming of the fixed step size of the measurement increment in the existing sequential compressed sensing is overcomed in the proposed algorithm.Theoretical analysis and computer simulations are conducted by introducing the rules of step size adjustment with piecewise function and parabolic function,respectively.Simulations prove that,the proposed algorithm has the faster detection speed,less measurements number and lower computational complexities,compared with the existing sequential compressed detection scheme.
出处 《数据采集与处理》 CSCD 北大核心 2015年第4期839-847,共9页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61301103)资助项目 国家自然科学基金(61401505)资助项目 江苏省自然科学基金(BK20130069)资助项目 中国博士后基金面上项目(2012M521853)资助项目 江苏省博士后科研资助计划(1201076C)资助项目 "物联网与控制技术"优势学科资助项目
关键词 宽带频谱感知 压缩采样 变步长 序贯压缩检测 wideband spectrum sensing compressed sampling variable step-size sequential compressed detection
  • 相关文献

参考文献15

  • 1Quan Zhi, Cui Shuguang, Sayed A H, et al. Wideband spectrum sensing in cognitive radio networks[C]//IEEE Internation- al Conference on Communications. Beijing, China: IEEE, 2008: 901-906.
  • 2Ghasemi A, Sousa E S. Spectrum sensing cognitive radio networks:Requirements challenges and design tradeoffs [J]. IEEE Communications Magazine, 2008, 46(4) : 32-39.
  • 3Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Davenport M A, Boufounos P T, Wakin M B, et al. Signal processing with compressive measurements [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 445 460.
  • 5金坚,谷源涛,梅顺良.压缩采样技术及其应用[J].电子与信息学报,2010,32(2):470-475. 被引量:78
  • 6张弓,杨萌,张劲东,陶宇.压缩感知在雷达目标探测与识别中的研究进展[J].数据采集与处理,2012,27(1):1-12. 被引量:24
  • 7王文娟,杨震.基于语音压缩感知观测序列非重构的清浊音判别法[J].数据采集与处理,2013,28(3):274-279. 被引量:2
  • 8Davood Mardani Najafabadi, Tadaion A A, Masoud Reza Aghabozorgi Sahaf. Wideband spectrum sensing by compressed measurements [C]// The Seventeenth IEEE Symposium on Computers and Communications. Cappadocia, Turkey: IEEE, 2012: 667-671.
  • 9Sun Hongjian, Chiu WeiYu, Nallanathan A. Adaptive compressive spectrum sensing for wideband cognitive radios [J]. IEEE Communications Letters, 2012, 16(11) : 1812-1815.
  • 10Wang Yue, Tian Zhi, Feng Chunyan. Sparsity order estimation and its application in compressive spectrum sensing for cogni- tive radios [J]. IEEE Transactions on Wireless Communications, 2012, 11(6): 2116-2125.

二级参考文献156

  • 1刘世金,张榆锋,陈文略,赵兴碧.在噪声抵消应用中自适应滤波算法性能的仿真比较[J].系统仿真学报,2006,18(5):1178-1180. 被引量:26
  • 2方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 3Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Candes E, Romberg J, and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 5Candes E. Compressive sampling. Int. Congress of Mathematics, Madrid, Spain, 2006, 3: 1433-1452.
  • 6Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-124.
  • 7Brandenburg K. MP3 and AAC explained. AES 17th international conference on High-Quaiity Audio coding, Erlangen, Germany, Sept. 1999: 1-12.
  • 8Pennebaker W and Mitchell J. JPEG: Still image data compression standard. Van Nostrand Reinhold, 1993.
  • 9Candes E and Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3):969-985.
  • 10Candes E and Tao T. Near-optimal signal recovery from random projections and universal encoding strategies. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.

共引文献114

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部