摘要
基于非Kolmogorov谱模型和广义惠更斯一菲涅耳原理,以双曲余弦高斯(ChG)涡旋光束为例,对部分相干ChG涡旋光束在非Kolmogorov大气湍流传输中拓扑电荷的守恒距离做了详细的研究。研究表明,广义结构常量Cn^2越大,广义指数参量α越小,湍流内尺度l0越小,空间相关长度σ0越小,束腰宽度ω0越大,则拓扑电荷守恒距离越小,而湍流外尺度L0和双曲余弦部分参数Ω0对拓扑电荷守恒距离无影响。
Based on the non-Kolmogorov spectrum and the generalized Huygens-Fresnel principle, taking the cosh- Gaussian (ChG) vortex beams as a typical example, the distance for the conservation of topological charge of partially coherent ChG vortex beams propagating through non-Kolmogorov atmospheric turbulence is studied. With the increment of general structure constant Cn^2 and the waist width ω0, as well as the decrement of the general exponent a, the inner scale lo and spatial correlation length σ0, the distance for the conservation of topological charge will decrease , whereas outer scale L0 and part parameters of hyperbolic cosine Ω0 has no effect on the distance for the conservation of topological charge.
出处
《光学学报》
EI
CAS
CSCD
北大核心
2015年第A01期28-34,共7页
Acta Optica Sinica
基金
国家自然科学基金(61405136,61178067)、山西省青年科技研究基金(2012021016,20130210104)
关键词
物理光学
拓扑电荷守恒距离
衍射积分
相干涡旋
非Kolmogorov大气湍流
physical optics
the distance for the conservation of topological charge
diffraction integral
coherent vortices
non-Kolmogorov atmospheric turbulence