期刊文献+

拓扑电荷在大气湍流中的守恒距离 被引量:2

Distance for Conservation of Topological Charge in Atmospheric Turbulence
原文传递
导出
摘要 基于非Kolmogorov谱模型和广义惠更斯一菲涅耳原理,以双曲余弦高斯(ChG)涡旋光束为例,对部分相干ChG涡旋光束在非Kolmogorov大气湍流传输中拓扑电荷的守恒距离做了详细的研究。研究表明,广义结构常量Cn^2越大,广义指数参量α越小,湍流内尺度l0越小,空间相关长度σ0越小,束腰宽度ω0越大,则拓扑电荷守恒距离越小,而湍流外尺度L0和双曲余弦部分参数Ω0对拓扑电荷守恒距离无影响。 Based on the non-Kolmogorov spectrum and the generalized Huygens-Fresnel principle, taking the cosh- Gaussian (ChG) vortex beams as a typical example, the distance for the conservation of topological charge of partially coherent ChG vortex beams propagating through non-Kolmogorov atmospheric turbulence is studied. With the increment of general structure constant Cn^2 and the waist width ω0, as well as the decrement of the general exponent a, the inner scale lo and spatial correlation length σ0, the distance for the conservation of topological charge will decrease , whereas outer scale L0 and part parameters of hyperbolic cosine Ω0 has no effect on the distance for the conservation of topological charge.
作者 曾军 李晋红
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第A01期28-34,共7页 Acta Optica Sinica
基金 国家自然科学基金(61405136,61178067)、山西省青年科技研究基金(2012021016,20130210104)
关键词 物理光学 拓扑电荷守恒距离 衍射积分 相干涡旋 非Kolmogorov大气湍流 physical optics the distance for the conservation of topological charge diffraction integral coherent vortices non-Kolmogorov atmospheric turbulence
  • 相关文献

参考文献28

  • 1Ashkin A, Dziedzic J, Bjorkholm J, et al.. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt Lett, 1986, 11(5): 288-290.
  • 2Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime[J]. Biophysical Journal, 1992, 61(2): 569-582.
  • 3He H, Friese M, Heckenberg N, et al.. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Phys Rev Lett, 1995, 75(5): 826-829.
  • 4Simpson N, Dholakia K, Allen L, et al.. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Opt Lett, 1997, 22(1): 52-54.
  • 5Lee W, Yuan X C, Cheong W. Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation[J]. Opt Lett, 2004, 29(15): 1796-1798.
  • 6Beranskis A, Matijoius A, Piskarskas A, et al.. Conversion of topological charge of optical vortices in a parametric frequency converter[J]. Opt Commun, 1997, 140(4): 273-276.
  • 7Voogd R J, Singh M, Braat J J. The use of orbital angular momentum of light beams for optical data storage[C]. SPIE, 2004, 5380: 387-392.
  • 8刘义东,高春清,高明伟,李丰.利用光束的轨道角动量实现高密度数据存储的机理研究[J].物理学报,2007,56(2):854-858. 被引量:26
  • 9Levenson M D, Ebihara T J, Dai G, et al.. Optical vortex masks for via levels[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2004, 3(2): 293-304.
  • 10Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Phys Rev Lett, 2005, 94(15): 153901.

二级参考文献90

共引文献82

同被引文献9

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部