期刊文献+

国家授时中心锶原子光钟的实验研制进展 被引量:6

Experiment Study on Optical Lattice Clock of Strontium at NTSC
原文传递
导出
摘要 目前光钟的稳定度和不确定度均已进入10^-18量级。介绍了中国科学院国家授时中心的锶原子光晶格钟的研究情况。以锶原子四种同位素中自然丰度最大的^88Sr为研究对象,依次实现了^88Sr的一级冷却和二级冷却。为消除一阶多普勒频移和反冲频移对冷原子运动的影响,充分发挥原子极窄钟跃迁谱线线宽的优点,冷原子被囚禁于光晶格中。而由光晶格导致的原子能级频移的问题可被“魔术”波长解决,对锶原子光钟,光晶格波长为813.4nm。实验中采用功率放大的半导体激光器输出“魔术”波长激光,通过一维驻波光场搭建将^88Sr装载进一维光品格中。测量得到囚禁于光晶格中的冷原子寿命为270ms,温度为3.5μK,数目为1.2×10^5。光晶格囚禁为下一步的钟跃迁信号提供了较长的探测时间并且有利于获得极窄线宽的钟跃迁谱线,因此是光钟研制中很重要的一步。 The accuracy and stability of optical clocks has achieved 10^-18 level currently. The progress on the optical lattice clocks of Strontium (Sr) atoms at National Time Service Center is presented. ^88Sr, which has the highest natural abundance in four isotopes of Sr, is cooled on the basis of transitions (5s5s) ^1S0-(5s5p)^1P1 and (5s5s)^1 S0- (5s5p)^3P1. In order to cancel the effect of Doppler shift and recoil shift these cold atoms are trapped in the optical lattice. However, the optical lattice where atoms are trapped can make the energy level shift, called A. C. Stark shift. The "magic" wavelength for clock transition (5s5s)^1S0-(5s5p)3P0 can make the same Stark light-shift for both of them, being value 813.4 nm. Then those cold ^88 Sr atoms are confined in a 1-D optical lattice constituted by the laser outputting from an amplified diode laser, operating on the "magic" wavelength 813nm. Consequently, the lifetime of atoms in 1-D optical lattice is measured and the value is 270 ms. The temperature and the number are about 3.5 μK and 1.2 ×10^5 respectively. Atoms confined in the optical lattice can provide a long interrogation time for probing the clock transition, furthermore make the foundation for developing the optical lattice clock of Sr atoms.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第A01期47-54,共8页 Acta Optica Sinica
基金 国家自然科学基金(61127901,11474282)
关键词 量子光学 时间频率基准 冷原子 光晶格 钟跃迁 quantum optics time and frequency standard cold atom optical lattice clock transition
  • 相关文献

参考文献24

  • 1Takamoto M, Hong F L, Higashi R, et al.. An optical lattice clock [J]. Nature, 2005, 435(7040): 321-324.
  • 2Falke S, Lemke N, Grebing C, et al.. A strontium lattice clock with 3×10-17 inaccuracy and its frequency [J]. New J Phys, 2014, 16(7): 073023.
  • 3Gurov M, McFerran J J, Nagórny B, et al.. Optical lattice clocks as candidates for a possible redefinition of the SI second [J]. IEEE Trans Instrum Meas, 2013, 62(6): 1568-1573.
  • 4Hinkley N, Sherman J A, Phillips N B, et al.. An atomic clock with 10-18 instability [J]. Science, 2013, 341(6151): 1215-1218.
  • 5Huntemann N, Okhapkin M, Lipphardt B, et al.. High-accuracy optical clock based on the octupole transition in 171Yb+ [J]. Phys Rev Lett, 2012, 108(9): 090801.
  • 6Margolis H S, Godun R M, Gill P, et al.. International timescales with optical clocks (ITOC) [C]. European Frequency and Time Forum & International Frequency Control Symposium, 2013: 908-911.
  • 7Chou C W, Hume D B, Koelemeij J C J, et al.. Frequency comparison of two high-accuracy Al+ optical clocks [J]. Phys Rev Lett, 2010, 104(7): 070802.
  • 8Bloom B J, Nicholson T L, Williams J R, et al.. An optical lattice clock with accuracy and stability at the 10-18 level [J]. Nature, 2014, 506(7486): 71-75.
  • 9Jaksch D, Bruder C, Cirac J I, et al.. Cold bosonic atoms in optical lattices [J]. Phys Rev Lett, 1998, 81(15): 3108-3111.
  • 10Derevianko A, Katori H. Colloquium: physics of optical lattice clocks [J]. Rev of Mod Phys, 2011, 83(2): 331-347.

二级参考文献43

  • 1马修泉,陈文兰,陈帅,刘新元,陈徐宗.半导体激光器塞曼调制稳频的实验对比研究[J].量子光学学报,2005,11(4):171-175. 被引量:5
  • 2王育竹,徐震.激光冷却及其在科学技术中的应用[J].物理学进展,2005,25(4):347-358. 被引量:11
  • 3黄凯凯,张建伟,陈景标,王凤芝,杨东海.钙原子束光学Ramsey实验的初步工作[J].时间频率学报,2006,29(1):58-65. 被引量:1
  • 4费立刚,朱钧,张书练.光学频率标准与光钟的实现[J].光学与光电技术,2006,4(6):55-59. 被引量:5
  • 5杨福家.原子物理学[M].北京:高等教育出版社.1999:93-117.
  • 6Xavier Baillard, Mathilde Fouch'e, Rodolphe Le Targat et al.. Accuracy evaluation of an optical lattice clock with bosonic atoms [J]. Opt. Lett. , 2007, 32(13): 1812-1817.
  • 7Pengfei Zhang, Haichao Zhang, Xinping Xu et al.. Cooling induced by parametric resonance in a magnetic quadrupole trap [J]. Chin. Opt. Lett., 2008, 6(2): 87-89.
  • 8Pengbin He, Qing Sun, Peng Li et al.. Magnetic quantum phase transition of cold atoms in an optical lattice [J]. Phys. Rev. A, 2007, 76(4): 043618- 1.
  • 9A. D. Ludlow, T. Zelevinsky, G. K. Campbella al.. Sr lattice clock at 1 × 10^-16 fractional uncertainty by remote optical evaluation with a Ca clock [J].Science, 2008, 319(5871), 1805-1808.
  • 10Martin M. Boyd. High Precision Spectroscopy of Strontium in an Optical Lattice: Toward a New Standard for Frequency and Time [D]. B. S. , University of Washington, 2002. 23-35.

共引文献35

同被引文献33

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部