期刊文献+

激光辐照生物细胞时热累积的研究 被引量:1

Research of Heat Accumulation of Laser Irradiated Biological Cells
原文传递
导出
摘要 光热效应是激光与生物组织相互作用时发生的重要效应之一,但其产生、传输和作用机理尚不十分清晰。激光辐照生物细胞时,温度是衡量其作用效果的重要参数,生物细胞中温度的变化间接反映了细胞的多种物理特性,在l临床应用中有重要作用。建立了激光辐照生物细胞时的数值模拟模型,通过热传输方程,运用有限元软件模拟并分析了激光辐照生物细胞时的热累积现象。拟合并分析了不同斩波周期下生物细胞的温度变化过程,并拟合出斩波周期为0.1s、辐照时间为0.2s时出现的两次温升、两次温降方程。实验结果表明只有当斩波频率达到一定值时才会出现热累积现象;同一激光辐照细胞热模型到达的最高温度与激光的斩波频率有关,激光斩波频率越高,所产生的光热效应越低。 Photo-thermal effect is one of the most important effects in the interactions between laser and biological tissue cells, however, its generation, transmission and action mechanisms are not yet clear. When laser irradiates biological cells, temperature is the decisive parameter in that temperature change in biological cells reflects a variety of physical properties of cells, which plays an important role in clinical applications. A numerical simulation model is built, and the heat accumulation process is simulated and analyzed using finite element software according to the heat transfer equations when laser irradiates biological cells. The temperature variation process of biological cells under different chopping cycles is analyzed, and equations of two temperature rise processes and two temperature drop processes are fitted when the chopper period is 0.1 s and the irradiation time is 0.2 s. It is concluded that the phenomenon of heat accumulation will appear only when the chopping frequency reaches a certain value; the highest temperature of thermal model which is irradiated by laser is related to the chopping frequency, and the higher the chopping frequency is, the lower the biological cell's thermal effect is.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第A01期298-302,共5页 Acta Optica Sinica
基金 国家青年科学基金(11201023)、辽宁省自然科学基金(201202026)、大连科技计划(2013A15GX049)、中央高校基本业务科研项目(DUT14LK18)
关键词 生物光学 光热效应 热累积 有限元软件 斩波频率 biotechnology photo-thermal effect heat accumulation finite element software chopping frequency
  • 相关文献

参考文献11

  • 1Zhang J Z, Shen Y G, Zhang X X. A dynamic photo-thermal model of CO2 laser tissue ablation[J]. Lasers in Medical Science, 2009, 24(3): 329-338.
  • 2Goldman L, Rockwell R J, Meyer R, et al.. Laser treatment of tattoos: A preliminary survey of three year's clinical experience[J]. Journal of the American Medical Association, 1967, 201(11): 841-845.
  • 3Goldman L, Rockwell R J, Naprstek Z, et al.. Some parameters of high output CO2 laser: Experimental surgery [J]. Nature, 1970, 228(5278): 1344-1345.
  • 4李小霞,范世福,赵友全.CO_2激光照射活体皮肤的光热效应研究[J].光电子.激光,2005,16(10):1257-1260. 被引量:9
  • 5陈燕,牛燕雄,唐芳,杨会钗,张雏,姜楠,杨海林.1319nm连续激光辐照皮肤组织的光热效应实验研究[J].光子学报,2009,38(5):1259-1263. 被引量:4
  • 6杨洪钦,陈建玲,王瑜华,谢树森,李晖.激光辐照生物组织傅里叶与非傅里叶热传导效应[J].中国激光,2009,36(10):2582-2586. 被引量:6
  • 7Lqbal M, Wasy A, Islam G U. Finite element analyses of a linear-accelerator electron gun[J]. Review of Scientific Instruments, 2014, 85(2): 023304.
  • 8Yuan B, Liu Y X, Yang J L. Finite element analysis of crystal furnace based on ANSYS workbench[J]. Advanced Materials Research, 2014, 842: 472-432.
  • 9Su Y L, Li L, Han W G. Study on thermal analysis of the shape of improved electric cooker liner based on ANSYS workbench[J]. Applied Mechanics and Materials, 2014, 487: 568-571.
  • 10Pennes H H. Analysis of tissue and arterial temperatures in the resting human forearm [J]. Journal of Applied Physiology, 1948, 1(2): 93-122.

二级参考文献36

共引文献16

同被引文献43

  • 1Skaradal A, Atala A. Biomaterials for integration with 3-D bioprinting[J]. Annals of Biomedical Engineering, 2015, 43(3): 730-746.
  • 2Bohandy J, Kim B F, Adrian F J. Metal deposition from a supported metal film using an excimer laser[J]. Journal of Applied Physics, 1986, 60(4): 1538-1539.
  • 3Fogarassy E, Fuchs C, Kerherve F, et al.. Laser- induced forward transfer of high- TcYBaCuO and BiSrCaCuO superconducting thin films[J]. Journal of Applied Physics, 1989, 66(1): 457-459.
  • 4Piqué A, Chrisey D B, Auyeung R C Y, et al.. A novel laser transfer process for direct writing of electronic and sensor materials [J]. Applied Physics A, 1999, 69(s1): S279-S284.
  • 5Ringeisen B R, Chrisey D B, Piqué A, et al.. Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer[J]. Biomaterials, 2002, 23(1): 161-166.
  • 6Ringeisen B R, Kim H, Barron J A, et al.. Laser printing of pluripotent embryonal carcinoma cells[J]. Tissue Engineering Part A, 2004, 10(3-4): 483-491.
  • 7Barron J A, Wu P, Ladouceur H D, et al.. Biological laser printing: A novel technique for creating heterogeneous 3- dimensional cell patterns[J]. Biomedical Microdevices, 2004, 6(2): 139-147.
  • 8Serra P, Duocastella M, Fernández- Pradas J M, et al.. Laser- induced forward transfer: A laser- based technique for biomolecules printing[M]. //Ringeisen B R, Spargo B J, Wu P K. Cell and organ printing. Netherlands: Springer, 2010: 53-74.
  • 9Chen C Y, Barron J A, Ringeisen B R. Cell patterning without chemical surface modification: Cell-cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel[J]. Applied Surface Science, 2006, 252(24): 8641-8645.
  • 10Guillemot F, Guillotin B, Catros S, et al.. High-throughput biological laser printing: Droplet ejection mechanism, integration of a dedicated workstation, and bioprinting of cells and biomaterials[M]. //Ringeisen B R, Spargo B J, Wu P K. Cell and organ printing. Netherlands: Springer, 2010: 95-113.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部