期刊文献+

非负迭代截断奇异值纳米颗粒粒度分布反演算法

Nonnegative Iterative TSVD Inversion Algorithm for Nanoscale Particle Sizing
原文传递
导出
摘要 截断奇异值分解法能够反演纳米颗粒的粒度分布,但通常难以确定其最优截断参数。在分析截断奇异值算法的基础上,提出非负迭代截断奇异值算法来获取纳米颗粒的粒度分布,并对选取截断参数的L-曲线准则进行了修正。实验结果表明,利用二次截断L-曲线准则选取最优截断参数,使用非负迭代截断奇异值反演算法,能准确地表征单峰分布的颗粒粒径大小及粒径分布,所求平均粒径相对误差小于3%。 Nanoscale Particle size distribution can be inverted by truncated singular value decomposition (TSVD) method. However, it is difficult to select the optimal truncated parameter. Based on the analyzation of TSVD method, we present a nonnegative iterative truncated singular value decomposition (NNI-TSVD) method for obtaining the particle size distribution of nanoscale particle suspensions from dynamic light scattering data. Furthermore, we modify the L-curve criterion for choosing the optimal truncated parameter. Experimental data show that with the NNI-TSVD method, its optimal truncated parameter selected by the second truncated L-curve criterion, can be employed to accurately get the average size and size distribution of unimodal suspensions. The relative error of the inverted average diameter is less than 3 %.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第A01期388-395,共8页 Acta Optica Sinica
基金 山东省自然科学基金(ZR2012FL22,ZR2012EEM028,ZR2014FL027)
关键词 散射 非负迭代截断奇异值分解 二次截断L-曲线 反演算法 最优截断参数 scattering truncated singular value decomposition(TSVD) nonnegative iterative TSVD (NNI-TSVD) second truncated L-curve inversion algorithm optimal truncated parameter
  • 相关文献

参考文献16

  • 1U Ktzel, R Bedrich, M Stintz. Dynamic light scattering for the characterization of polydisperse fractal systems: I. simulation of the diffusional behavior[J]. Part Part Syst Charact, 2008, 25(1): 9-18.
  • 2C Batz-Sohn. Particle sizes of fumed oxides: A new approach using PCS signals[J]. Part Part Syst Charact, 2003, 20(6): 370-378.
  • 3Thomas Antony, Anita Saxena. Laser light scattering immunoassay: An improved data analysis by CONTIN method[J]. J Biochem Biophy Methods, 1998, 36(2-3): 75-85.
  • 4喻雷寿,杨冠玲,何振江,李仪芳.用于动态光散射颗粒测量的迭代CONTIN算法[J].光电工程,2006,33(8):64-69. 被引量:25
  • 5周述苍,杨燕婷,周誉昌.纳米颗粒粒径测量的非负最小二乘法算法分析及改进[J].中国粉体技术,2009,15(5):72-75. 被引量:3
  • 6周述苍,周莹,郭天葵.光子相关光谱法粒径测量的非负最小二乘法[J].广东工业大学学报,2012,29(1):5-8. 被引量:3
  • 7P C Hansen. The truncated SVD as a method for regularzation[J]. BIT Numerical Mathematics, 1987, 27(4): 534-553.
  • 8Xinjun Zhu, Jin Shen, Wei Liu, et al.. Nonnegative least square truncated singular value decomposition data[J]. Appl Opt, 2010, 49(34): 6591-6596.
  • 9N Ostrowsky, D Sornette, P Parker, et al.. Exponential sampling method for light scattering polydispersity analysis[J]. J Mod Opt, 1981, 28(8): 1059-1070.
  • 10Yunfei Sun, John G Walker. Maximum likelihood data inversion for photon correlation spectroscopy[J]. Meas Sci Technol, 2008, 19(11): 115302.

二级参考文献22

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部