期刊文献+

页岩气渗流数学模型 被引量:21

Gas flow in shale reservoirs
原文传递
导出
摘要 针对页岩气藏流体运移机理复杂、传统模型难以准确描述的难题,本文综合考虑页岩气在孔隙中的黏性流动、Knudsen扩散以及吸附气的表面扩散和因岩石变形引起的滑移分别建立自由气和吸附气扩散方程,建立页岩气在基质与裂缝中的渗流数学模型,并采用非线性非平衡Langmuir吸附理论分析页岩气渗流过程中的解吸附机理.通过数值模拟方法研究了不同流动机制对页岩气产量的影响,结果表明,吸附气的表面扩散与滑移对页岩气产量的影响均在0.1%以下,可以忽略;黏性流动与Knudsen扩散主导页岩气的渗流;非平衡吸附速率对页岩气产量影响较大,吸附速率越大,产量越大.本文建立的模型能较好地揭示页岩气的复杂渗流机理,并为页岩气藏的开发提供了科学基础. This study incorporates various gas transport mechanisms in shale nanopores with nonlinear and non-equilibrium gas adsorptiondesorption kinetics. We formulate a simplified model for matrix and hydraulic fractures to study the dynamic production performance of multi-stage fractured horizontal wells in shale gas reservoirs. The gas transport mechanisms include viscous flow, Knudsen diffusion of free gas, surface diffusion, and slippage of adsorbed gas whilerock deformation is coupled in the flow equations. The sensitivity of the production rate to key physical parameters is examined through numerical simulation. Our results indicate that the viscous flow and Knudsen diffusion dominate the production of shale gas. The production rate was sensitive to the desorption rate while largely unaffected by the surface diffusion and slippage of the adsorbed gas, given that the transport process of adsorbed gas is a much slower process than the diffusion of free gas.
出处 《科学通报》 EI CAS CSCD 北大核心 2015年第24期2259-2271,共13页 Chinese Science Bulletin
基金 国家杰出青年科学基金(51325402) 国家自然科学基金重大项目(51490650) 国家自然科学基金重点项目(51234006)资助
关键词 页岩气 渗流 非平衡吸附理论 数值模拟 shale gas flow mechanism non-equilibrium desorption numerical simulation
  • 相关文献

参考文献32

  • 1姚军,孙海,黄朝琴,张磊,曾青冬,隋宏光,樊冬艳.页岩气藏开发中的关键力学问题[J].中国科学:物理学、力学、天文学,2013,43(12):1527-1547. 被引量:85
  • 2唐颖,唐玄,王广源,张琴.页岩气开发水力压裂技术综述[J].地质通报,2011,31(2):393-399. 被引量:157
  • 3Guo C, Wei M, Chen H, et al. Improved numerical simulation for shale gas reservoirs. In: Offshore Technology Conference Asia, Kuala Lumpur, 2014.
  • 4Javadpour F, Fisher D, Unsworth M. Nanoscale gas flow in shale gas sediments. J Can Petrol Technol, 2007, 46:55-61.
  • 5Freeman C M, Moridis G, Llk D, et al. A numerical study of performance for tight gas and shale gas reservoir systems. J Petrol Sci Eng, 2013, 108:22-39.
  • 6Kast W, Hohenthanner C R. Mass transfer within the gas-phase of porous media. Int J Heat Mass Tran, 2000, 43:807-823.
  • 7Guo J J, Zhang L H, Wang H T, et al. Pressure transient analysis for multi-stage fractured horizontal wells in shale gas reservoirs. Transp Porous Med, 2012, 93:635-653.
  • 8Nobakht M, Clarkson C R, Kaviani D. New type curves for analyzing horizontal well with multiple fractures in shale gas reservoirs. J Nat Gas Sci Eng, 2013, 10:99-112.
  • 9Zhao Y L, Zhang L H, Zhao J Z, et al. "Triple porosity" modeling of transient well test and rate decline analysis for multi-fractured hori- zontal well in shale gas reservoirs. J Petrol Sci Eng, 2013, 110:253-262.
  • 10Yu W, Sepehrnoori K. Numerical evaluation of the impact of geomechanics on well performance in shale gas reservoirs. In: 47th US Rock Mechanics/Genomechanics Symposium, San Francisco, 2013.

二级参考文献159

共引文献250

同被引文献321

引证文献21

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部