期刊文献+

基于物理干扰模型的WSNs抗干扰连通控制集算法

Maximum Anti-interference Connected Dominating Set Algorithm for WSNs Based on Physical Interference Model
原文传递
导出
摘要 无线传感器网络(WSNs)中通过构造连通控制集(CDS)可以使节点更好的实现路由。文章在物理干扰模型SINR下,采用非一致功率,定义了节点抗干扰权重Ivw,提出了抗干扰的CDS算法AIWCDS,理论分析了算法的正确性以及有效性,证明了算法求出的CDS抗干扰权重值满足Tw≥(1/△-1/△(△+1)n),其中Ivw表示控制集节点总的抗干扰权重,OPTw表示最优解的总抗干扰权重,?为网络中节点的最大度。算法AIWCDS的时间复杂度仅为O(n2△log△),与改进的文献[3]中Zhiyong Lin(2013)等人提出的时间复杂度为O(n4)的算法C-MLCDS相比,在构造CDS时耗时更少,网络健壮性更高。 With the constructing of connected dominating set(CDS), the node in wireless sensor network can achieve better routing. In this paper, We apply non-uniform power based on physical interference model, give the definition of anti-interference weight Ivw, propose the connected dominating set algorithm AIWCDS, theoretically analysis the correctness and effectiveness of the algorithm, proof that anti-interference weight satisfy inequality, Tw≥(1/△-1/△(△+1)n),Tw and OPTw indicates the anti-interference weight sum of the calculated CDS and optimal CDS respectively, ?is the maximum degree of the whole network. The time complexity of algorithm AIWCDS isO(n2△log△), however, the value of C-MLCDS which is proposed by Zhiyong Lin in 2013 would up to. Compared with the improved algorithm C-MLCDS, the algorithm AIWCDS is more stable and less time consuming in the process of implementation.
作者 刘芳 禹继国
出处 《电子技术(上海)》 2015年第8期11-14,10,共5页 Electronic Technology
基金 国家自然科学基金资助项目(11101243) 山东省自然科学基金资助项目(ZR2012FM023 ZR2012FQ011) 山东省高校科技计划基金资助项目(J10LG09 J12LN06)
关键词 无线传感器网络 节点抗干扰权重 物理干扰模型 非一致功率 连通控制集 WSNs physical interference model Non-uniform Power CDS
  • 相关文献

参考文献10

  • 1Shouling Ji, Zhipeng Cai,Yingshu Li, Xiaohua Jia:Continuous Data Collection Capacity of Dual-RadioMultichannel Wireless Sensor Networks. IEEETrans.Parallel Distrib. Syst.23(10):1844-1855,2012.
  • 2Shouling Ji, Yingshu Li, Xiaohua Jia: Capacity ofdual-radio multi-channel wireless sensor networksfor continuous data collection.INFOCOM ,1062-1070,2011.
  • 3Lin, Z., Liu, H.,Chu,X.,Leung, Y” & Stojmenovic I:.Constructing Connected Dominating Set withMaximum Lifetime in Cognitive Radio Networks,IEEE Transactions on Computers ,2013.
  • 4Thomas Kesselheim: A constant-factor approximationfor wireless capacity maximization with powercontrol in the sinr model. InACM-SIAM Symposiumon Discrete Algorithms (SODA), 2011.
  • 5K. Censor-Hillel, S. Gilbert, F. Kuhn, N.A. Lynch,C.C: Newport. Structuring unreliable radionetworks.In Proc. PODC, 2011.
  • 6Tomasz Jurdzinski, Dariusz R. Kowalski: DistributedBackbone Structure for Algorithms in the SINR Modelof Wireless Networks. DISC,106-120, 2012.
  • 7Maleq Khan, V. S. Anil Kumar, Gopal Pandurangan,Guanhong Pei: A Fast Distributed ApproximationAlgorithm for Minimum Spanning Trees in the SINRModel. CoRRabs/1206.1113,2012.
  • 8Hongxing Li, Chuan Wu, Qiang-Sheng Hua,Francis C. M. Lau: Latency-minimizing dataaggregation in wireless sensor networks underphysical interference model. Ad Hoc Networks12: 52-68, 2014.
  • 9Tung-Wei Kuo, Ming-Jer Tsai: On the constructionof data aggregation tree with minimum energy costin wireless sensor networks: NP-completeness andapproximation algorithms. INFOCOM ,2591-2595,2012.
  • 10Tung-Wei Kuo, Ming-Jer Tsai: On the constructionof data aggregation tree with minimum energy costin wireless sensor networks: NP-completeness andapproximation algorithms. INFOCOM ,2591-2595,2012.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部