期刊文献+

综合时间及评分因素的电影评分预测方法 被引量:2

Time and rating factor considered rating prediction method
原文传递
导出
摘要 提出一种改进的基于对分网络的评分预测方法,首先将用户对项目的行为记录利用对分网络来表示,利用对分网络的结构特征来设计算法。算法综合时间因素、评分差以及网络的路径信息,挖掘用户-项目对分网络顶点之间的关联性,计算用户之间的相似度,利用谱聚类算法建用户聚类为兴趣组,最后利用邻居用户的评分信息预测用户对未知项目的评分。在标准数据库上验证此方法的有效性,结果证明,方法的平均绝对误差低于对比方法达0.07以上。 Propose a improved prediction method based on bipartite network. Firstly use a bipartite network to represent the user's behavior records, then design algorithm using structural features of bipartite network. In this method, time parameter, the difference between ratings and path information of the network are used to mine the correlation between the vertices in the user-item network to calculate the similarity between users. Users are clustered into interest groups based on spectral clustering.Finally, predict the user's rating on unknown item by neighbor users' information. Verify the validity of the method on the standard data set movielens. The experimental results show that the mean absolute error of proposed method is lower than the contrast methods by more than 0.07.
出处 《电子技术(上海)》 2015年第8期72-77,共6页 Electronic Technology
基金 国家科技支撑计划课题:电视商务综合体新业态运营支撑系统开发(2012BAH73F01) 中国科学院"NGB有线无线融合应用"重点部署项目子课题:"面向NGB的互联网视频访问控制应用示范(KGZD-EW-103-5(5))"
关键词 对分网络 评分预测 谱聚类 兴趣组 bipartite network rating prediction spectral clustering interest group
  • 相关文献

参考文献8

  • 1王娜,陈会敏.泛在网络中信息过载危害及原因的调查分析[J].情报理论与实践,2014,37(11):20-25. 被引量:21
  • 2Choi S-M, Ko S-K, Han Y-S. A movie recommendationalgorithm based on genre correlations [J]. ExpertSystems with Applications, 2012,39(9): 8079-85.
  • 3Lee S,Song S-i, Kahng M, et al. Random walk basedentity ranking on graph for multidimensionalrecommendation [C] .Proceedings of the Proceedingsof the fifth ACM conference on Recommendersystems, ACM, 2011: 93-100.
  • 4Li X,Su X,Wang M. Social network-basedrecommendation: a graph random walk kernelapproach [C].Proceedings of the Proceedings ofthe 12th ACM/IEEE-CS joint conference on digitallibraries, ACM, 2012: 409-10.
  • 5Tiroshi A, Berkovsky S,Kaafar M A, et al.Improving business rating predictions using graphbased features [C] .Proceedings of the Proceedingsof the 19th international conference on IntelligentUser Interfaces, ACM, 2014: 17-26.
  • 6Li X, Chen H. Recommendation as link predictionin bipartite graphs: A graph kernel-based machinelearning approach [J]. Decision Support Systems,2013, 54(2): 880-90.
  • 7Newman M E. Scientific collaboration networks. I.Network construction and fundamental results [J].Physical review E,2001, 64(1): 016131.
  • 8Ekstrand M D, Riedl J T,Konstan J A. Collaborativefiltering recommender systems [J]. Foundationsand Trends in Human-Computer Interaction, 2011,4(2): 81-173.

二级参考文献22

  • 1马满仓.泛在网络技术及其应用[J].电信科学,2011,27(S1):306-309. 被引量:5
  • 2文浩.无处不在的终极网络——泛在网[J].射频世界,2010(1):44-47. 被引量:8
  • 3蔺丰奇,刘益.网络化信息环境中信息过载问题研究综述[J].情报资料工作,2007,28(3):36-41. 被引量:24
  • 4蔺丰奇,刘益.信息过载问题研究述评[J].情报理论与实践,2007,30(5):710-714. 被引量:61
  • 5信息素养[EB/OL].[2007-11-22].http://www.acad.cersp.com/article/1607950.html
  • 6CNNIC.2014年1月第33次中国互联网络发展状况统计报告[EB/OL].http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201401/P020140116395418429515.pdf.
  • 7WEISER M. The computer for the twenty-first century [ J ]. Scientific American, 1991, 265 (3) : 94-104.
  • 8CLAUDIA K, RUDOLF R, SINKOVICS, ZOU Huan "Joy". Information Overload: A Cross-national Investigation of Influ- ence Faetors and Effects. [ EB/OL ]. [ 2014-02-22 ]. ht- tp: //www. emeraldinsight, corn/journals, htm? issn = 0263- 4503&volume = 25&issue = 7&articleid = 1630980&show = ab- stract.
  • 9CASEY C J. Coping with information overload : the need for em-pirical research [ J ]. Cost and Management, 1992 ( 4 ) : 31-37.
  • 10WURMAN, RICHARD S B, PETERED. Information architects [J]. Library Journal, 1996, 121 (16): 120.

共引文献20

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部