期刊文献+

基于R-滤子的多帧图像重建算法

Multi-frame image reconstruction algorithm based on R-filters
下载PDF
导出
摘要 针对图像重建中低分辨率图像信息的利用和先验项(正则化项)的估计问题,提出一种新颖的算法——R-滤子方法,通过计算输入图像的高阶信息来构建先验项,同时采用广义交叉验证(Generalized Cross Validation,GCV)方法自适应求解先验项参数(正则化参数),加强算法的自适应性。实验结果表明:重建图像的峰值信噪比值(Peak Signal-to-Noise Ratio,PSNR)比目前主要先验项方法(BTV、Sparse、Huber)的重建图像的值更高,从重建图像的局部细节和纹理也看出该方法的重建图像具有更丰富的信息,同时,从构造方法上说明R-滤子方法在计算上要优于其他方法。 In image reconstruction, making full use of low-resolution images and estimation prior is an important issue.This paper proposes a novel algorithm, using R-filters method, through calculating the high-level information of image and building prior term. At the same time, it takes advantage of the Generalized Cross-Validation(GCV)to solve adaptive regularization parameter, strengthens adaptivity of the algorithm. Result shows that compared to the current main reconstruction algorithm(BTV, Sparse, Huber), the Peak Signal-to-Noise Ratio(PSNR)of images is higher than others and details are also richer, also from the construction it shows R-filter is superior than others.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第17期194-198,共5页 Computer Engineering and Applications
基金 中国科学院"西部之光"人才培养计划联合学者项目(No.[2011]) 国家973项目(No.2011CB302402) 国家自然科学基金重点项目(No.91118001)
关键词 图像重建 R-滤子 广义交叉验证(GCV) 自适应参数 先验项 峰值信噪比值(PSNR) image reconstruction R-filters Generalized Cross Validation(GCV) adaptive parameter prior Peak Signal-to-Noise Ratio(PSNR)
  • 相关文献

参考文献12

  • 1Huang T S, Tsay R Y.Multiple frame image restoration and registration[J].Advances in Computer Vision and Image Processing, 1984, 1 (2) : 317-339.
  • 2Farsiu S,Robinson D,Elad M, et al.Advance and chal- lenges in superresolution[J].International Journal of Imag- ing Systems and Technology, 2004, 14(2) : 47-57.
  • 3Tipping M E,Bishop C M.Bayesian image super- resolution[C]//Neural Information Processing Systems (NIPS) ,2003 : 1303-1310.
  • 4Pickup L C, Capel D P,Roberts S J, et al.Bayesian imagesuper-resolution, continued[C]//Advances in Neural Infor- mation and Proceedings Systems(NIPS),2006: 1089-1096.
  • 5Woods N A,Galatsanos N P,Katsaggelos A K.Stochastic methods for joint registration, restoration, and interpola- tion of multiple undersampled images[J].IEEE Transac- tions on Image Processing, 2006,15 ( 1 ) : 201-213.
  • 6Li Y R, Dai D Q, Shen L X.Multiframe super-resolution reconstruction using sparse directional regularization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010,20 ( 7 ) : 945-956.
  • 7Dong W,Li X,Zhang L,et al.Sparsity-based image deblur- ring with locally adaptive and nonlocally robust regulari- zation[C]//International Conference on Image Processing (ICIP) ,2011 : 1841-1844.
  • 8Dong W,Li X,Zhang L,et al.Sparsity-based image denois- ing via dictionary learning and structural clustering[C]// 2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2011 : 457-464.
  • 9冷拓.R-滤子的谱及几何性质[J].应用数学和力学,2009,30(1):109-119. 被引量:1
  • 10Elad M, Feuer A.Super-resolution restoration of an image sequence: adaptive filtering approach[J].IEEE Transac- tions on Image Processing, 1999,8(2) :387-395.

二级参考文献10

  • 1Hodrick R J,Prescott E C, Postwar U S. Business cycles:an empirical investigation[ J]. Journal of Money, Credit, and Banking, 1997,29( 1 ) : 1-16.
  • 2Araujo Fabio, Areosa Marta Baltar Moreira, Nero Jose Alvaro Rodrigues. R-filters: a Hodrick- Prescott filter generalization[R]. Working Paper Series, 69,2003, 1-37.
  • 3Ehlgen Jurgen. Distortionary effects of the optimal Hodrick-Prescott filter[J]. Ecanomic Letters, 1998, 61(3) :345-349.
  • 4Razaak W. The Hodrick-Prescott technique: a smooler versus a filter, an application to New Zealand GDP[ J ]. Economic Letters, 1997,57 (2) : 163-168.
  • 5Cogly Timothy, Nason James M. Effects of the Hodrick-Prescott filter on trend and difference stationary time series, implication for business cycle research[J]. Journal of Economic Dynamics and Control, 1995,19(1/2) : 253-278.
  • 6King Robert G, Rebelo Sergio T.Low frequency filtering and real business cycles[ J]. Journal of Economic Dynamics and Control, 1993,17:207-231.
  • 7Reeves J J, Blyth C A, Small J P. The Hodrick-Prescott filter, a generalization, and a new procedure for extracting an empirical cycle from series[J]. Studies in Nonlinear Dynamics and Economics, 2000,4( 1 ) : 1-16.
  • 8Baxter M, King Robert G. Measure business cycles approximate band-pass filters for economic time series [ J ]. The Review of Economics and Statistics, 1999,81 (4) :575-593.
  • 9Apel Mikael, Hansen Jan, Lindberg Hans. Potential output and output gap[J]. Quarterly Review of the Bank of,Sweden, 1996,3:24-35.
  • 10Hom R, Johnson C R. Martrix Analysis[M] .New York:Cambridge University Press, 1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部