期刊文献+

基于流形结构邻域选择的局部投影近邻传播算法 被引量:3

Locality preserving projections affinity propagation plgorithm based on manifold structure neighborhood selection
下载PDF
导出
摘要 近邻传播算法是一种快速有效的聚类方法.针对近邻传播算法在无先验知识条件下偏向参数选择的问题,使用Silhouette聚类有效性指标确定偏向参数.针对近邻传播算法在处理结构复杂或高维数据时,存在数据信息重叠的问题,提出将局部保持投影方法与近邻传播算法相结合的方法,在有效保留数据内部非线性结构的前提下,有效删除数据空间中的冗余信息.仿真结果验证了提出的算法优于传统的近邻传播算法. Affinity propagation(AP)algorithm is a fast and effective clustering method.Compared with other traditional clustering algorithms,the AP algorithm treats each data point as the candidate of the representative point to avoid the clustering results limiting in the choice of initial representative point.At the same time,the algorithm does not need the symmetry of the similarity matrix generated in the dataset with high operation speed in dealing with large-scale multi class data.Hence,AP algorithm can effectively solve the problem of non Euclidean space and large sparse matrix calculation.Due to the great advantage of the AP algorithm in clustering,it is widely applied in pattern recognition,web mining,biomedical and multi target detection,and is becoming a necessary method of data analysis.In order to well determine bias parameter of AP algorithm without prior knowledge,a novel method called silhouette clustering validity index is utilized to determine the parameter in this paper.The problem of information overlap is the main drawback of AP algorithm in dealing with complex structure or high dimensional data for clustering.In order to resolve the above problem,we propose an approaching algorithm which combines the locality preserving projections(LPP)method and the AP algorithm.It deletes the redundant information in the data space under the condition of effectively keeping the data inner nonlinear structure.The experiment results verify its accuracy and effectiveness and shows that the performance of the proposed algorithm is better than the traditional AP algorithm.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期741-748,共8页 Journal of Nanjing University(Natural Science)
基金 江苏省产学研联合创新资金―前瞻性联合研究项目(BY2013015-33) 江苏省自然科学基金(BK20131107)
关键词 近邻传播算法 局部保持投影 Silhouette指标 邻域选择 流形距离 affinity propagation(AP) locality preserving projections(LPP) silhouette index neighborhood selection manifold distance
  • 相关文献

参考文献18

  • 1许榕,缪李囡,施静静,陈启美.基于空间聚类的交通流预测模型[J].南京大学学报(自然科学版),2015,51(2):251-256. 被引量:8
  • 2Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814) ~972-976.
  • 3Frey B J, Dueck D. Response to comment on "clustering by passing messages between data points". Science, 2008,319 ( 5864) : 726d- 726d.
  • 4董俊,王锁萍,熊范纶.可变相似性度量的近邻传播聚类[J].电子与信息学报,2010,32(3):509-514. 被引量:49
  • 5Wang D, Li L, Yu Z, et al. AP2CE: Double affinity propagation based cluster ensemble. In: The 12'h International Conference on Machine Learning and Cybernetics. New York= IEEE Press,2014 : 16 23.
  • 6Gui B, Yang X. Research on parameters of affinity propagation clustering. Advanced Technologies, Embedded and Multimedia {or Human-Centric Computing, HumanCom and EMC 2013. Berlin:Springer 2014..637 644.
  • 7Wang X, Zhang X, Zhuang C,et al. Automatically determining the number of Affinity Propagation Clustering using Particle Swarm. In: The 5'h IEEE Conference on Industrial Electronics and Applications. New York: IEEE Press, 2010: 1526-1530.
  • 8Zhang X, Wang W, Norvag K, et al. K-AP: Generating specified K clusters by efficient Affinity Propagation. In: The 10th IEEE International Con{erence on Data Mining. New York:IEEEPress,2010:1187 1192.
  • 9王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:145
  • 10I.iu D, Lu W, Zhong N. Clustering of fMRI data using affinity propagation. In.. The 2010 International Conference on Brain Informatics (BI). Berlin : Springer, 2010 : 399 - 406.

二级参考文献47

  • 1韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测[J].系统仿真学报,2004,16(7):1530-1532. 被引量:95
  • 2倪巍伟,陆介平,孙志挥.基于向量内积不等式的分布式k均值聚类算法[J].计算机研究与发展,2005,42(9):1493-1497. 被引量:15
  • 3王进,史其信.短时交通流预测模型综述[J].中国公共安全(学术版),2005(1):92-98. 被引量:59
  • 4Frey B J and Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976.
  • 5Givoni I E and Frey B J. A binary variable model for affinity propagation. Neural Computation, 2009, 21(6): 1589-1600.
  • 6Jia Sen, Qian Yun-tao, and Ji Zhen, Band hyperspectral imagery using affinity. Proceedings of the 2008 Digital Image Techniques and Applications, Canberra, ACT selection for Propagation. Computing: 1-3.12.2008:137-141.
  • 7Gang Li, Lei brain MR International (ISCAS 2009) Guo, and Liu Tian-ming, et at. Grouping of images via affinity propagation. IEEE Symposium on Circuits and Systems, 2009 Taipei, Taiwan, 5.24. 2009: 2425-2428.
  • 8Dueck D, Frey B J, and Jojic N, et al. Constructing treatment portfolios using affinity propagation[C]. Proceedings of 12th Annual International Conference, RECOMB 2008. Singapore. 3.30-4.2, 2008: 360-371.
  • 9Leone M, Sumedha, and Weigt M. Clustering by soft-constraint affinity propagation: applications to gene- expression data. Bioinformatics, 2007, 23(20): 2708-2715.
  • 10Alexander Hinneburg and Daniel A Keim. A general approach to clustering in large databases with noise. Knowledge and Information Systems, 2003, 5(4): 387-415.

共引文献241

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部