期刊文献+

水稻护颖外稃化突变体lsl的遗传分析与基因定位 被引量:1

Genetic Analysis and Gene Mapping of a lemma-like sterile lemma(lsl) Mutant in Rice
原文传递
导出
摘要 护颖是水稻等稻族禾本科植物的小穗器官,关于其进化及发育的分子机制还不十分清楚。本研究报道了一个来源于保持系水稻‘西农1B’的EMS诱变群体中的护颖异常突变体,暂被命名为lsl(lemma-like sterile lemma),主要表现为护颖显著伸长变宽。花器官发育早期,lsl突变体护颖原基表现出与野生型护颖一致的发育分化模式;到成熟期,lsl突变体护颖表层细胞严重硅化,着生大量毛刺,与外稃类似,护颖内部细胞结构解剖也和外稃一致。这些结果表明突变体的护颖发生了向外稃的同源异型转化。将lsl与‘缙恢10号’杂交构建F1和F2定位群体。遗传分析表明该突变体受隐性单基因控制。利用SSR分子标记,通过BSA法,将LSL基因定位在第7染色体上SSR标记RM1085和RM6663之间,物理距离为735.5 kb。本研究为进一步理解LSL基因的功能及分子机理奠定了良好的基础。 Rice is the model plant of Gramineae, and the sterile lemmas are its unique spikelet organs. The molecular mechanism of sterile lemma development doesn't have a defi nite peroration. In this study, a sterile lemma mutant lsl(lemma-like sterile lemma) with signifi cantly lemma-like, which is derived from ethyl methane sulfonate(EMS)-treated mutation in maintainer rice ‘Xinong 1B'. The mutant sterile lemma elongation and widen, serious silicide surface cells, with a large number of burr which like the burr on lemma, and the morphological structure dissection of sterile lemma is similar to the lemma. The results showed that the linkage relation of LSL locus was located between markers RM1085 and RM6663 on the short arm of chromosome 7, the physical distance is 735.5 kb. This result provided a foundation of map-based cloning and function analysis of LSL gene.
出处 《植物生理学报》 CAS CSCD 北大核心 2015年第8期1293-1298,共6页 Plant Physiology Journal
基金 重庆市能力提升项目(cstc2014pt-sy80001) 攻关项目(cstc2012gg B80005)
关键词 水稻 小穗 不育外稃 护颖外稃化突变体 遗传分析 rice spikelet sterile lemma lsl(lemma-like sterile lemma) genetic analysis
  • 相关文献

参考文献18

  • 1李云峰,杨正林,凌英华,王楠,任德勇,王增,何光华.水稻多小花小穗突变体mf1的鉴定与基因定位[J].作物学报,2011,37(2):280-285. 被引量:7
  • 2Arber A (1935). The Gramineae: A Study of Cereal, Bamboo, and Grasses. Cambridge, UK: Cambridge University Press.
  • 3Chuck G, Meeley RB, Hake S (1998). The control of maize spikelet meristem fate by the APETELA2-1ike gene indeterminate spike- let1. Genes Dev, 12:1145-1154.
  • 4Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002). The control of spikelet rneristem identity by the branched silklessl gene in maize. Science, 298:1238-1241.
  • 5Gao XC, Liang WQ, Yin CS, Ji SM, Wang HM, Su X, Guo C, Kong HZ, Xue HW, Zhang DB (2010). The SEPALLATA-Iike gene OsMADS34 is required for flee in florescence and spikelet de- velopment. Plant Physiol, 153:728-740.
  • 6Hong L, Qian Q, Zhu K, Tang D, Huang Z, Gao L, Li M, Gu M, Cheng Z (2010). ELE restrains empty glumes from developing into lemmas. J Genet Genomics, 37:101-115.
  • 7Ikeda K, Sunohara H, Nagato Y (2004). Developmental course of in flora scene and spikelet in rice. Breeding Sci, 54 (2): 147-156.
  • 8Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kita- no H, Nagato Y (2005). Rice plant development: from zygote to spikelet. Plant Cell Physiol, 46 (1): 23-47.
  • 9Kellogg EA (2009). The evolutionary history of Ehrhartoideae, Ory- zeae, and Oryza. Rice, 2 (1): 1-14.
  • 10Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J (2010). PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA sub- family MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol, 51:47-57.

二级参考文献21

  • 1Coen E S,Meyerowitz E M.The war of the whorls genetic interactions controlling flower development.Nature,1991,353:31-37.
  • 2Weigel D,Meyerowit2 E M.The ABCs of floral homeotic genes.Cell,1994,78:203-209.
  • 3Jack T.Molecular and genetic mechanisms of floral control.Plant Cell,2004,16:1-17.
  • 4Nagasawa N,Miyoshi M,Sano Y,Satoh H,Hirano H,Sakai H,Nagato Y.SUPERWOMAN1,DROOPING LEAF genes control floral organ identity in rice.Development,2003,130:705-718.
  • 5Whipple C J,Ciceri E Padilla C M,Ambrose B A,Bandong S L,Schmidt R J.Conservation of B-class floral homeotic gene function between maize and Arabidopsis.Development,2004,131:6083-6091.
  • 6Yamaguchi T,Lee D Y,Miyao A,Hirochika H,An G,Hirano H Y.Functional diversification of the two C-class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa.Plant Cell,2006,18:15-28.
  • 7Clifford H T.Spikelet and floral morphology.In:Soderstrom T R,Hilu K W,Campbell C S,Barkworth M E,eds.Grass Systematics and Evolution.Washington DC:Smithsonian Institution Press,1987.pp 21-30.
  • 8Malcomber S T,Preston J C,Reinheimer R,Kossuth J,Kellogg E A.Developmental gene evolution and the origin of grass inflorescence diversity In:Leebens-Mack J,Soltis D E,Soltis P S,eds.Developmental Genetics of the Flower.New York:Academic Press,2006.pp 383-421.
  • 9Lee D Y,Lee J,Moon S,Park S Y,An G.The rice beterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem.Plant J,2007,49:64-78.
  • 10Chuck G,Meeley R B,Hake S.The control of maize spikelet meristem fate by the APETELA2-like gene indeterminate spikelet1.Genes Dev,1998,12:1145-1154.

共引文献6

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部