期刊文献+

关于一类非线性差分方程的解的频率收敛分析 被引量:2

Frequent convergence for solutions of a class of nonlinear difference equation
下载PDF
导出
摘要 利用数列的频率测度定义及其性质,研究一类差分方程x2n+1=m-x n在3<m<1时的解4的频率收敛性。定义与所讨论差分方程密切相关的多项式函数,求出此函数的不动点,利用此函数在不同区间上的单调性,证明初始值取在区间[-1-4m-3(1/2)/2,1-1+4m(1/2)/2)∪(1-1+4m(1/2)/2,-1+4m-3(1/2)/2][1-4m-3(1/2)/2,-1+4m(1/2)/2)∪(-1+1+4m(1/2)/2,1+4m-3(1/2)/2]中时,差分方程的解有两个0.5度频率极限1+4m-3(1/2)/2和1-4m-3(1/2)/2。 Frequently convergence for solutions of a class of difference equation x n + 1= m- x^2 nare dis-3cussed where m 1 by using definition and properties of frequency measure of real valued se-4quences. First of all,a polynomial function closely related to the difference equation is defined,and then its fixed points are presented. Finally,using monotone properties of this function in different interval,it[- 1- 4mis proved that if the initial values are in the interval [-1-√4m-3/2,1-√1+4m/2)∪(1-√1+4m/2,-1+√4m-3/2][1-√4m-3/2,-1+4m/2)∪(-1+√1+4m/2,1+4m,-1+√4m-3/2],then the solutions of the difference equation have two frequent limits 1+√4m-3/2 and 1-√4m-3/2 of degree 0. 5.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2015年第4期468-474,共7页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11361065) 吉林省自然科学基金资助项目(201215239)
关键词 频率测度 频率收敛 频率属于 frequency measure frequent convergence frequently inside
  • 相关文献

参考文献13

  • 1TIAN C J, XIE S L, CHENG S S. Measures for oscillatory sequences[ J]. Computers and Mathematics with Applications, 1998, 36(10) : 149 - 161.
  • 2XIE S L, TIAN C J. Frequent oscillatory criteria for partial difference equations with several delays[ J] tions, 2004, 48(3 -4) : 335 -345.
  • 3ZHU Z Q, CHENG S S. Frequently oscillatory solutions for multi-level partial difference equations[ J] 1(29 -32) : 1497 -1509.
  • 4TIAN C J, CHENG S S. Frequent convergence and applications[ J]. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathe- matical Analysis, 2006, 13 (5) : 653 - 668.
  • 5YANG J, ZHANG Y J, CHENG S S. Frequent oscillation in a nonlinear partial difference equation [ J ]. Central European Journal of Mathematics, 2007, 5(3) : 607 -618.
  • 6TIAN C J, ZHANG B G. Frequent oscillation of a class of partial difference equations [ J ]. Zeitschrift fllr Analysis und ihre Anwendungen, 1999, 18(1): 111-130.
  • 7TIAN C J. New concepts for sequences and discrete systems(I) [ J ]. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathe- matical Analysis, 2008, 15(5) : 671 -709.
  • 8YANG J, ZHANG Y J. Frequent oscillatory solutions of a nonlinear partial difference equation[ J ]. Journal of Computational and Applied Mathe- matics, 2009, 224(2) : 492 -499.
  • 9TIAN C J, CHENG S S, GIRDAL M. Necessary and sufficient conditions for frequent cauchy sequences[J]. Asian-European Journal of Mathe- matics, "2009, 2 (2) : 295 - 305.
  • 10陶元红,李秀东.一类非线性时滞偏差分方程的频率振动解(英文)[J].黑龙江大学自然科学学报,2010,27(5):591-595. 被引量:10

二级参考文献20

  • 1TIAN Chuan - jun, XIE Sheng - li, CHENG Sui - sheng. Measures for oscillatory sequences[ J]. Comput Math Applic, 1998, 36 : 149 - 161.
  • 2CHENG Sui -sheng. Partial difference equations [ M ]. London/New York: Taylor and Francis, 2003.
  • 3ZHU Zhi - qiang, CHENG Sui - sheng. Frequently oscillatory solutions of neutral difference equations[ J]. Southeast Asian Bulletin of Mathematics, 2005,29 : 627 -634.
  • 4TIAN Chuan- jun, CHENG Sui- sheng, XIE Sheng- li. Frequent oscillation criteria for a delay difference equation [ J]. Funkcialaj Ekvacioj, 2003,46 : 421 -439.
  • 5ZHU Zhi - qiang, CHENG Sui - sheng. Frequently oscillatory solutions for multi - level partial difference equations [ J ]. Internat Math Forum, 2006,31 : 1497 - 1509.
  • 6YANG Jun, ZHANG Yu - jing. Frequent oscillatory solutions of a nonlinear partial difference equation[ J ]. J Comput Appl Math, 2009,224 : 492 - 499.
  • 7XU Li - hua, YANG Jun. Frequent oscillatory behavior of delay partial difference equations with positive and negative coefficients [ J ]. Advances in Difference Equations, 2010 : Article ID 606149, 15 pages.
  • 8BECKENBACH E F, BELLMAN R. Inequalities[ M]. New Yory/Berlin: Random House, 1961.
  • 9TIAN Chuanjun, XIE Shengli, CHENG Suisun. Measures for oscillatory sequences[J]. Computers and Mathemat ics with Applications, 1998,36(10-12):149-161.
  • 10ZHU Zhiqiang, CHENG Suisun. Frequently oscillatory solution of neutral difference equation[J].Southeast Asian Bulletin of Mathematics, 2005,13 (29) : 624-634.

共引文献9

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部