摘要
利用数列的频率测度定义及其性质,研究一类差分方程x2n+1=m-x n在3<m<1时的解4的频率收敛性。定义与所讨论差分方程密切相关的多项式函数,求出此函数的不动点,利用此函数在不同区间上的单调性,证明初始值取在区间[-1-4m-3(1/2)/2,1-1+4m(1/2)/2)∪(1-1+4m(1/2)/2,-1+4m-3(1/2)/2][1-4m-3(1/2)/2,-1+4m(1/2)/2)∪(-1+1+4m(1/2)/2,1+4m-3(1/2)/2]中时,差分方程的解有两个0.5度频率极限1+4m-3(1/2)/2和1-4m-3(1/2)/2。
Frequently convergence for solutions of a class of difference equation x n + 1= m- x^2 nare dis-3cussed where m 1 by using definition and properties of frequency measure of real valued se-4quences. First of all,a polynomial function closely related to the difference equation is defined,and then its fixed points are presented. Finally,using monotone properties of this function in different interval,it[- 1- 4mis proved that if the initial values are in the interval [-1-√4m-3/2,1-√1+4m/2)∪(1-√1+4m/2,-1+√4m-3/2][1-√4m-3/2,-1+4m/2)∪(-1+√1+4m/2,1+4m,-1+√4m-3/2],then the solutions of the difference equation have two frequent limits 1+√4m-3/2 and 1-√4m-3/2 of degree 0. 5.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2015年第4期468-474,共7页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(11361065)
吉林省自然科学基金资助项目(201215239)
关键词
频率测度
频率收敛
频率属于
frequency measure
frequent convergence
frequently inside