期刊文献+

钠钾替代对甜菜幼苗生长及养分吸收的影响 被引量:6

Effect on the growth and nutrient elements absorption of the sugar beet seeding under the replacement of potassium by sodium
下载PDF
导出
摘要 以甜菜ST13092为供试品种,采用室内营养液水培方式,研究了不同程度钠替代钾条件下甜菜生长和养分吸收的状况。结果表明,50%和99%的钾被钠代替后,株高和水势明显降低;50%钾被钠替代后,叶面积和相对含水量较对照没有明显变化,但99%钾被替代后,叶面积和相对含水量降低明显;50%的钾被钠替代后,各部分的干物质积累与对照相比没有明显差异;钠钾替代效率以根系和叶柄最高,达到了近99%,叶片次之,为92%,整株的替代效率为95%;随着钠替代钾比例的升高,甜菜体内的K+含量及积累量明显降低,Na+含量及积累量明显升高;环境中Na+的增加提高了甜菜根系和叶片中氮素的含量,但对磷含量的影响不大。 This study focused on growth and nutrient elements absorption of sugar beet ST13092 with the replacement of potassium by sodium at different degrees using hydroponic culture. The results showed that the plant's height and water potential obviously decreased when 50% and 99% of potassium was replaced by sodium under this experiment condition. Compared with the CK,there was no obvious difference in the leaf area and relative water content after 50% of potassium was replaced by sodium. But the leaf area and relative water content significantly decreased after 99% of potassium was replaced by sodium compared with CK. After 50% of potassium was replaced by sodium,there was also no obvious difference in accumulation of dry material at different parts; the replacement efficiencies of root and petiole were large as nearly 99%; the replacement efficiency of blade was 92 %; and the replacement efficiency of the whole plant was 95%. With increase of sodium replacement,the content and accumulation of K+obviously decreased,however,the content and accumulation of Na+obviously increased in sugar beet. The nitrogen content of sugar beet roots and leaves showed the same co-relationship with Na+in the environment,which had little influence on the phosphorus content.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2015年第4期526-532,共7页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(31271779) 国家甜菜现代农业产业技术体系建设项目"东北区甜菜栽培"(CARS210301-02) 黑龙江省普通高等学校甜菜遗传育种重点实验室开放课题资助项目
关键词 钠钾替代 甜菜幼苗 生长 养分吸收 the replacement of potassium by sodium sugar beet growth nutrient elements absorption
  • 相关文献

参考文献18

  • 1李三相,周向睿,王锁民.Na^+在植物中的有益作用[J].中国沙漠,2008,28(3):485-490. 被引量:47
  • 2LINDHAUER M G, HEADER H E, BERINGER H. Osmotic potentials and solute concentrations in sugar beet plants cultivated with varying potas- sium/sodium ratios[J]. Z Planzenemahr Bodenk, 1990, 153:25 -32.
  • 3MARSCHNER H. Potassium in Biochemistry and Physiology[ C]. Bern: International Potash Institute, 1971 : 50 -63.
  • 4CRAM W J. Negative feedback regulation of transport in ceils. The maintenance of turgor, volume and nutrient supply. LI2TTGE U, PITMAN M G, eds. Transport in Plants II, Part A, Cells Encyclopedia of Plant Physiology, New Series[ M]. Berlin, Heidelberg, New York: Springer, 1976, 2:284-316.
  • 5於丽华,耿贵.不同浓度NaCl对甜菜生长的影响[J].中国糖料,2007(3):14-16. 被引量:14
  • 6彭春雪,耿贵,於丽华,杨云,邳植,孙菲,孙学伟,赵慧杰.不同浓度钠对甜菜生长及生理特性的影响[J].植物营养与肥料学报,2014,20(2):459-465. 被引量:26
  • 7PI Z, STEVANATO P, YU L H, et al. Effects of potassium deficiency and replacement of potassium by sodium on sugar beet plant[ J]. Russ J Plant, 2014, 61:224-230.
  • 8WAKEEL A, STEFFENS D, SCHUBERT S. Potassium substitution by sodium in sugar beet ( beta vulgaris) nutrition on K-fixing soils[ J]. J Plant Nutr Soil Sei, 2010, 173: 127- 134.
  • 9RUSH D W, EPSTEIN E. Comparative studies on the sodium, potassium, and chloride relations of a wild halophytic and a domestic salt-sensitive tomato species[ J]. Plant Physiol, 1981,68:1308 -1313.
  • 10王铁军,梁启全,於丽华,惠菲,彭春雪,杨云,林利红,耿贵.钠钾替代对甜菜生长的影响[J].中国糖料,2012,34(3):33-35. 被引量:6

二级参考文献97

共引文献353

同被引文献89

  • 1王慧敏,王正银.蔬菜锌素营养与产量和品质的关系[J].蔬菜,2005(12):38-40. 被引量:5
  • 2李凤霞,马力文.甜菜地膜覆盖栽培的土壤盐分变化及其对产质量的影响[J].中国农业气象,1996,17(2):33-35. 被引量:8
  • 3于冰,李海英,马春泉,张绍军,李荣田,郭德栋.甜菜无融合生殖系花期差异表达基因cDNA文库的构建[J].高技术通讯,2006,16(9):954-958. 被引量:12
  • 4邹智,卢长明.影响农杆菌介导遗传转化的植物因子研究进展[J].生物技术通报,2008,24(1):1-9. 被引量:13
  • 5吴川,宫世龙,潘钰,等. 甜菜M 14品系BvM14-glyoxalase I 基因的克隆及表达分析[J] . 国际遗传学杂志. 2012, 35(1) : 76-79.
  • 6Conklin P L. Recent advances in the role and biosynthesis of ascorbic acid in plants[J]. Plant, Cell & Environment, 2001,24(4) : 383-394.
  • 7Noshi M, Hatanaka R, Tanabe N, et al. Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductaseis required for high-light stress tolerance in Arabidopsis[J]. Bioscience, biotechnology, and biochemistry, 2016: 1-8.
  • 8P J, Silva J M, Conklin D S, et al. A resource for large-scale RNA-interference-based screens in mammals[J]. Nature, 2004,428(6981) : 427^31.
  • 9Yang L, Zhang Y, Zhu N, et al. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14 [J]. J ProteomeRes, 2013, 1201) : 4931^950.
  • 10Li H, Pan Y, Zhang Y, et al. Salt stress response of membrane proteome of sugar beet monosomic addition line M14[J]. Journalof proteomics, 2015, 127: 18-33.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部